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Abstract
This review reports on the research done during past years on violations
of the fluctuation–dissipation theorem (FDT) in glassy systems. It is
focused on the existence of a quasi-fluctuation–dissipation theorem (QFDT) in
glassy systems and the current supporting knowledge gained from numerical
simulation studies. It covers a broad range of non-stationary aging and
stationary driven systems such as structural glasses, spin glasses, coarsening
systems, ferromagnetic models at criticality, trap models, models with entropy
barriers, kinetically constrained models, sheared systems and granular media.
The review is divided into four main parts: (1) an introductory section
explaining basic notions related to the existence of the FDT in equilibrium
and its possible extension to the glassy regime (QFDT), (2) a description of
the basic analytical tools and results derived in the framework of some exactly
solvable models, (3) a detailed report of the current evidence in favour of the
QFDT and (4) a brief digression on the experimental evidence in its favour.
This review is intended for inexpert readers who want to learn about the basic
notions and concepts related to the existence of the QFDT as well as for the
more expert readers who may be interested in more specific results.
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Nomenclature

1RSB One-step replica symmetry breaking
BG Backgammon
BTM Bouchaud trap model
EA Edwards–Anderson model
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FD Fluctuation–dissipation
FDR Fluctuation–dissipation ratio
FDT Fluctuation–dissipation theorem
FILG Frustrated Ising lattice gas
IRF Integrated response function
IS Inherent structure
LJ Lennard-Jones
ME Master equation
MF Mean-field
MCT Mode-coupling theory
OSC Oscillator
QFDT Quasi-fluctuation–dissipation theorem
REM Random energy model
RFIM Random field Ising model
ROM Random orthogonal model
RSB Replica symmetry breaking
SK Sherrington–Kirkpatrick
TAP Thouless–Anderson–Palmer
Tc Mode-coupling critical temperature, dynamical critical temperature
Teff Effective temperature
Tg Glass transition temperature
TK Kauzmann temperature
TRSB Static transition temperature in replica calculations
TRM Thermoremanent magnetization
TTI Time translation invariance
ZFC Zero field cooled

1. Introduction

The search for a general theory of non-equilibrium processes has been a primary goal
in modern statistical physics. Despite many efforts in this direction, we have a limited
understanding of the basic principles behind non-equilibrium theories. Compared with
ensemble equilibrium theory, a general principle such as the equal probability Boltzmann
principle (that forms the basis of equilibrium statistical mechanics and provides a statistical
foundation of thermodynamics) is still lacking. During the last century, the field of non-
equilibrium phenomena has grown in two directions: (1) by developing new statistical models
as an inspiring source of fruitful new concepts and ideas and (2) by establishing partial links
among different, apparently disconnected, non-equilibrium phenomena.

Although much progress has been made in the first direction, the second one remains less
unexplored. While a general principle governing non-equilibrium systems probably does not
exist, substantial progress could be made following the second route in the search for basic
principles governing a restricted category or class of systems. The applications of such basic
principles may be very important because a priori many different systems can fall into the same
category. Hence the interest in the research on the existence of such restricted formulations.

During the past years it has become increasingly clear that glassy systems may constitute
one of these large categories where their physical behaviour can be rationalized within a
restricted formulation. Glassy systems are rather common in nature and many systems such
as structural glasses, spin glasses, disordered and granular materials or proteins present what
is called glassy behaviour. This means a dramatic slowing down of relaxational processes
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when some control parameters are varied. A typical signature of glassy behaviour is a
power law or stretched exponential behaviour of correlation functions, as opposed to
exponential decay. As the characteristic relaxation time may change by several orders of
magnitude it can easily exceed the observation time. As a consequence the system ages: the
observed static and dynamic properties depend on the age of the system defined as the time
since the system was prepared (also called waiting time). For this reason, this residual very
slow non-equilibrium phenomenon is commonly known as aging.

Aging systems include a large variety of materials. In fact, nearly all physical systems,
within an appropriate set of conditions and observed during a specific time window, display
glassy properties. The origin of glassy behaviour, however, can vary from system to system.
The most important class of glassy systems (which include window glasses) are glass forming
liquids where glassy behaviour is due to the appearance,as some external parameter is changed,
of a long-lived complex pattern of interacting bonds between their microscopic constituents
which strongly inhibits relaxation towards equilibrium. Aging follows from the very slow
motion of such a complex pattern of interacting bonds which induces a slow change of the
atomic structure of the liquid. For this reason glass forming liquids are usually called structural
glasses. Our current understanding of the slow glassy relaxation dynamics is greatly limited
by the lack of a general non-equilibrium theory that accounts for these phenomena.

Glasses can be generated by the fast cooling of a liquid. Upon cooling from high
temperatures down to the melting transition temperature TM, sometimes crystallization does
not occur and the liquid continues its way down in temperature beyond TM by following a line
(called the supercooled liquid line) which is the continuation of the liquid line. As the liquid
line is thermodynamically stable only above TM, the supercooled liquid line is metastable with
locally equilibrated properties, so its lifetime can be extremely large. As cooling proceeds it is
observed that the supercooled liquid falls out of equilibrium (i.e. departs from the supercooled
liquid line), below a temperature T ∗(r) which depends on the cooling rate r. The state reached
below T ∗(r) is called a glass and the corresponding relaxational regime is indistinctly termed
as aging or glassy. For small values of r a sharp transition is observed at T ∗(r), usually
referred to as structural arrest, where the heat capacity jumps down, indicating the freezing of
degrees of freedom. In contrast to the supercooled state, the glass state is of non-equilibrium
nature and T ∗(r) is observed to decrease with r. As T ∗(r) depends on the cooling rate,
no equilibrium phase transition occurs at that temperature. This means that the liquid will
eventually equilibrate back to the supercooled state. The equilibration process may take an
extremely long time (even for temperatures only a few degrees below T ∗) being inaccessible
from any practical point of view. Under some conditions the equilibration time can be larger
than the age of the universe! In these conditions the glass state is the only observable state.

Long equilibration times imply that the glass state is characterized by very low energy
dissipation rates, also called entropy production. This may give the false impression that the
glass is in a stationary state. For instance, a piece of silica glass at room temperature looks
pretty stable, indeed its optical, electrical and mechanical properties appear constant in time.
However, a more careful examination reveals that the physical properties are constant only
if observed on timescales much smaller than the time elapsed since the glass was prepared
or formed. Beyond that timescale, the physical properties change revealing that the glass is
aging.

Although aging was identified a long time ago in the study of polymers [1] it has
received renewed interest in connection with the study of spin-glasses. Measurements of
the magnetization in spin glasses have shown that aging is a general property of the low-
temperature spin-glass phase. There are several types of spin-glass materials, the most
common ones are metallic spin glasses. These are random diluted magnetic systems where
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glassy behaviour arises from the disordered pattern of exchange interactions, rather than being
self-generated as in structural glasses. Indeed random dilution generates exchange interactions
with random competing signs, the system is then frustrated since a finite fraction of bonds
cannot be satisfied. Aging is a consequence of the slow evolution of the pattern of satisfied
bonds which becomes strongly inhibited as the temperature is lowered.

Another class of systems with glassy properties are driven systems which, under certain
conditions, reach a stationary state characterized by non-Gibbsian probability distributions.
After applying a time-dependent perturbation of frequency ω > 1/teq, upon an initially
equilibrated system of relaxation time teq, a new stationary state is reached which for many
aspects is similar to the aging state of the relaxational system of age ∼1/ω.

Another important aspect of glassy systems that has received considerable attention for a
long time [2] is the idea of the existence of an effective temperature (sometimes also called
fictive temperature) describing the non-equilibrium properties of the glassy state. During the
last decades, it has emerged that a possible way to rationalize the existence of an effective
temperature is by measuring violations of the fluctuation–dissipation theorem (FDT). In glassy
systems, a new modified relation between correlations and responses that goes under the name
of quasi-FDT (QFDT) provides a description of the dynamics in the glassy state by quantifying
the violations of the FDT. In this new theorem the effective temperature plays the role of the
temperature of the bath. Related to the concept of the effective temperature is the idea of the
existence of a heat flow from the glass to the thermal bath put in contact with the system.
As the glass has an effective temperature higher than that of the bath, the heat flows from
the glass to the bath. However, the energy dissipation rate from the glass towards the bath
is extremely low (hardly measurable) and, in general, this flow can also be understood in
terms of an effective very low thermal conductivity. The reader should be aware that using
QFDT is only one among other possible ways of introducing an effective temperature for the
description of the glassy state. In general, other definitions which use a generalization of
different equilibrium relations to the non-equilibrium regime are possible. This gives rise to
the problem of the equivalence of all possible definitions. We shall not discuss this point in
this review and we will stick to the QFDT definition of an effective temperature.

This review will concentrate on the existence of a QFDT, its physical meaning, in what
conditions it can emerge and the numerical evidence reported in favour of its validity. This
is a rapidly growing area of research which is attracting new condensed matter and statistical
physicists. We will report here the most important results obtained up until the summer of the
year 2002. Although we have tried to cover most of the published work some contributions may
have been overlooked. We apologize in advance to those colleagues. Although some of the
results reviewed here are currently well understood many others still lack a full comprehension
so it is no exaggeration to say that some of the ideas and suggestions described in this
review could be modified in the future to adapt to the forthcoming theoretical, numerical
or experimental evidence. Most of the results reported here deal with relaxational aging
systems (as compared to driven systems) since these are those that have mostly attracted the
attention of the researchers in the field. However, future developments in this exciting area of
research might compensate this original unbalance as driven systems appear more amenable
to experimental research than aging systems. Moreover, in this review we shall only consider
the FDT in its classical version. Although most of the ideas can be extended to the quantum
regime, to our knowledge there are neither numerical nor experimental works challenging FDT
violations in the quantum aging regime. Therefore we shall not address them, the interested
reader is referred to a recent review [3].

Many textbooks and article reviews can be useful to complement the contents of this
review. Basic reviews on the glass transition since the mid 1980’s until now can be found
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in [4–7]. Other accounts dealing with aspects of the glass transition include thermodynamic
theories of the glass transition [8, 9], mode-coupling theory (MCT) [10, 11] and numerical
simulations [12]. For spin glasses a good selection of review articles can be found in [13]. A
clear discussion of mode-coupling approximations in the context of disordered systems can
be found in [14]. A recent discussion of several aspects concerning FDT violations can be
found also in a recent review on kinetically constrained models [15]. Finally, a thorough
compendium of analytical methods for glassy dynamics has been recently collected in [3] and
a review of granular systems in [16]. Proceeding articles covering several aspects of glasses
and spin glasses can be found in [17, 18] and for kinetically constrained models in [19].

The contents of this review have been written with two kinds of readers in mind: inexpert
and expert. Those inexpert readers who want to understand the most basic ideas as well as
the interest of investigating FDT violations must read sections 2, 3 and 4. These sections
have been written at an introductory level, so expert readers who know about the subject may
start reading directly from section 5. However, a careful reading of section 4 is recommended
to those readers who want to have a more physically appealing description of the possible
origin of FDT violations. Section 5 deals with some of the thermodynamic consequences
of FDT violations. Sections 6 and 7 constitute the core of the review. Section 6 describes
our knowledge of FDT violations gathered from several exactly solvable models where many
aspects of their non-equilibrium behaviour can be understood by analytical means. Section 7
covers all evidence collected in the past years in favour of the existence of a QFDT in glassy
systems. Many of the model systems described in this section correspond to realistic as well as
model systems for which analytical solutions are hardly known. The expert reader who wants
to grasp the state of the art concerning these questions will be mainly interested in these two
sections. Finally, a brief account of some experimental results on FDT violations is described
in section 8. Section 9 presents some conclusions.

2. Basic definitions and concepts

In this section, we recall some concepts of equilibrium theory which will be needed later for
the description of the glassy state.

2.1. The microcanonical and canonical ensembles

The foundations of equilibrium statistical mechanics rely on the maximum entropy postulate
and the Boltzmann equal probability hypothesis. An introduction to the basic postulates can
be found in the classical books on statistical mechanics; rather excellent are those by Ma [20]
and Callen [21]. Good discussions also come from information theory, see for example the
book of Beck and Schloegel [22].

In what follows we shall denote by C a generic system configuration in the phase space.
The phase space can be either continuous or discrete depending on the particular system.
For example, for a system of N particles C are the positions and momenta in a continuous
6N-dimensional space, while for a system of N 1

2 -spins C is a point in a discrete N-dimensional
space with 2N points. The system evolves in time following a dynamical rule which generally
speaking is a rule that for each configuration C associates a new configuration C ′. The set of
configurations which can be visited given a dynamical rule, defines the region of motion in the
phase space. Let � be the volume of the region of motion allowed by the invariant quantities.
The basic assumption of statistical mechanics asserts that the entropy is the logarithm of �.
This makes the entropy computable without having to solve the dynamics. If we assume that
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the system is described by an energy function E(C) then the motion is confined to a region in
phase space of constant energy. The calculation of entropy is then reduced to

S(E) = ln
∑
C

δ(E − E(C)) (1)

where in the case of continuous variables the sum must be read as an integral. This equation
defines the microcanonical ensemble. Since all allowed states are included S(E) is clearly a
maximum over all possible regions of constant energy E into which the phase space can be
divided.

Let us consider now an observable A(C) which we will assume to be neither a constant of
motion nor a univocal function of the energy E. We also assume that A(C) is extensive, i.e., it
is proportional to the system size (volume or the number of constituents). We can then divide
the phase space according to the value of A(C) and, defining the degeneration �(E,A) of the
partition as the total number of configurations C of energy E and observable value A,

�(E,A) =
∑
C

δ(E − E(C))δ(A − A(C)) (2)

introduce the entropy in analogy with (1):

S(E,A) = ln �(E,A). (3)

Using the integral representation of delta functions �(E,A) can be rewritten as

�(E,A) =
∫ ∞

−∞

dα1 dα2

(2π)2
exp(iα1E + iα2A)

∑
C

exp[−iα1E(C) − iα2A(C)]

=
∫ ∞

−∞

dα1 dα2

(2π)2
exp[S(E,A, α1, α2)] (4)

where the function S(E,A, α1, α2) is given by

S(E,A, α1, α2) = iα1E + iα2A + lnZ(α1, α2) (5)

and Z(α1, α2) is the partition function given by

Z(α1, α2) =
∑
C

exp[−iα1E(C) − iα2A(C)]. (6)

Since both energy and the observable are extensive quantities the sum in (6) is dominated, in
the limit of large system size, by the largest contribution, and Z is exponentially large in the
system size. The function S(E,A, α1, α2) is then an extensive quantity and, in that limit, the
integrations can be done selecting the dominant contribution using the saddle point method,

∂S(E,A, α1, α2)

∂α1
= ∂S(E,A, α1, α2)

∂α2
= 0 (7)

which leads to the saddle point equations

E = 1

Z(α1, α2)

∑
C

E(C) exp[−iα1E(C) − iα2A(C)] ≡ 〈E〉 (8)

A = 1

Z(α1, α2)

∑
C

A(C) exp[−iα1E(C) − iα2A(C)] ≡ 〈A〉. (9)

Reality of �(E,A) implies that the solution α∗
1(E,A), α∗

2(E,A) of the saddle point equations
must be pure imaginary: α∗

1 = −iβ, α∗
2 = −iµ with β and µ real numbers. The entropy (3)

is given by the value of S(E,A, α1, α2) evaluated at the saddle point:

S(E,A) = S(E,A,−iβ,−iµ) = βE + µA + lnZ(β,µ). (10)
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We can now ask the following question. What is the best choice of the value of A(C) for which
S attains its maximum? Stationarity of S with respect to α1 and α2 at the saddle point implies

∂S(E,A)

∂E
= β (11)

∂S(E,A)

∂A
= µ (12)

so that the maximum entropy assumption requires µ = 0, i.e., the entropy S(E,A) must be
stationary with respect to variations of A. For any energy E the best choice of A is then

A = 〈A〉 = 1

Z(β)

∑
C

A(C) exp[−βE(C)] (13)

where

Z(β) =
∑
C

exp[−βE(C)] = exp[−βF(β)]. (14)

The value of the entropy is

S(E) = βE + lnZ(β) (15)

and is independent of A as required from stationarity. Finally, from (11) it follows that β−1 can
be identified with the temperature T of equilibrium thermodynamics, while insertion of (14)
into (15) yields the thermodynamic relation F(β) = E(T ) − T S(E) identifying F(β) with
the Helmholtz free energy. Equations (11), (13), (14) and (15) define the canonical ensemble.

Different to the microcanonical ensemble, the measure of the canonical ensemble is not
restricted on states of constant energy. All possible states C enter but with a weight proportional
to exp[−βE(C)]. For a given temperature, however, only states with energy E = 〈E〉 given
by (13) for A(C) = E(C) (see (8)) significantly contribute to the measure. The temperature
can be seen as a Lagrange multiplier used to fix the value of the energy. Conversely, each
value of E in equilibrium selects a temperature T through (11).

2.2. Einstein fluctuation theory

A key contribution in the development of equilibrium statistical mechanics is the statistical
theory of fluctuations developed by Einstein [21]. In the previous section we have seen that in
equilibrium the value of any observable A(C) is given by (13), which for the purpose of this
section will be denoted by Aeq. The equilibrium value corresponds to the most probable value
of A(C), i.e., to the value of A(C) which has the overwhelming probability of being seen in
equilibrium. The same considerations apply to the energy E(C) in the canonical ensemble.

We may then ask what is the probability of observing a value of A(C) different from the
equilibrium value. This probability is simply proportional to the number of configurations
with A(C) = A which from (3) is

P(δA) ∝ �(Eeq, A = Aeq + δA) ∝ exp[S(Eeq, Aeq + δA)] (16)

where following our notation Eeq is equilibrium energy. For small values of the fluctuations
δA the exponent can be expanded and using stationarity of the entropy with respect to variation
of A we get

S(Eeq, A) = S(Eeq, Aeq) +
(δA)2

2

(
∂2S

∂A2

)
A=Aeq

+ O(δA)3. (17)
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If Aeq is a maximum, then a necessary condition is(
∂2S

∂A2

)
A=Aeq

= − 1

T χA

< 0. (18)

From (16) we finally obtain

P(δA) = 1√
2πT χA

exp

[
− (δA)2

2T χA

]
. (19)

As χA is an extensive quantity only subextensive fluctuations δA ∼ √
V , where V is the

system size, have finite probability in equilibrium. This justifies the most probable character
of the equilibrium the value Aeq.

The quantity χA is called susceptibility, and from (19) is related to fluctuations of A

through

T χA = 〈A2〉 − 〈A〉2. (20)

This relation is the simplest form of the static fluctuation–dissipation theorem (FDT) which
relates the magnitude of thermal fluctuations with the response of the system to a (small)
perturbation.

Suppose we add a constant perturbation −εA(C) to the energy E(C). Then in the new
equilibrium the value 〈A〉ε of A is (see (13))

〈A〉ε =
∑

C A(C) exp[−βE(C) + βεA(C)]∑
C exp[−βE(C) + βεA(C)]

. (21)

The susceptibility χA is defined as the variation of 〈A〉 induced by a small perturbation

χA = ∂〈A〉ε
∂ε

∣∣∣∣
ε=0

(22)

and hence measures the response of the system to the perturbation. Inserting (21) into (22) a
straightforward calculation leads to (20).

The FDT formula (20) is a non-trivial result, since it relates different physical processes:
the susceptibility describes an extensive O(V ) variation of the observable A while the rhs
of (20) describes subextensive O(

√
V ) thermal fluctuations. This fact is at the basis of the

Onsager regression principle discussed in the next section.

2.3. The Onsager regression principle: a simple derivation of the fluctuation–dissipation
theorem (FDT)

Onsager proposed [23, 24] a simple derivation of FDT for time-dependent perturbations.
The derivation bypasses the more cumbersome analytical developments using linear response
theory formalism, the Fokker–Planck equation or the generalized master equation approach.

Onsager derivation is based on the following regression principle: if a system initially in
an equilibrium state 1 is driven by an external perturbation to a different equilibrium state 2,
then the evolution of the system from state 1 towards state 2 in the presence of the perturbation
can be treated as a spontaneous equilibrium fluctuation (in the presence of the perturbation)
from the (now) non-equilibrium state 1 to the (now) equilibrium state 2.

Suppose that the system is initially in equilibrium with a thermal bath at temperature T,
then the probability distribution of system configuration C in state 1 is given by the canonical
ensemble (13):

P0(C) = exp[−βE(C)]∑
C exp[−βE(C)]

. (23)

The subscript ‘0’ indicates that the system is unperturbed.
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tt=0

<A(t)>

(t)ε

Figure 1. Perturbation ε(t) and typical evolution curve for 〈A(t)〉ε .

At time t = 0 a constant perturbation coupled to the observable B(C) is applied to the
system changing its energy into

Eε(C) = E(C) − ε(t)B(C) (24)

where ε(t) = ε if t > 0, and zero otherwise. The effect of the perturbation can be monitored by
looking at the evolution of the expectation value 〈A(t)〉ε of an observable A(C), not necessarily
equal to B(C), from the equilibrium value in state 1 〈A(t = 0)〉ε = 〈A〉0 towards the new
equilibrium value in state 2. The shape of ε(t) and a typical evolution of 〈A(t)〉ε are shown in
figure 1.

The expectation value of 〈A(t)〉ε is given by the average over all possible dynamical paths
originating from initial configurations weighted with the probability distribution (23),

〈A(t)〉ε =
∑
C,C0

A(C)Pε(C, t|C0, 0)P0(C0) (25)

where Pε(C, t|C0, 0) is the conditional probability for the evolution from the configuration C0

at time t = 0 to the configuration C at time t. If ε = 0 the expectation value becomes time
independent since the initial state is in equilibrium and P0(C, t|C0, 0) describes spontaneous
equilibrium fluctuations.

The Onsager regression principle asserts that the conditional probabilities after having
applied the perturbation are equal to those of spontaneous equilibrium fluctuations in state 2.
Hence since the state 2 is still described by the canonical ensemble (23), but with the energy
(24) now including the perturbation term, then

Pε(C, t|C0, 0) = P0(C, t|C0, 0) exp{βε[B(C) − B(C0)]} (26)

where the rhs of this equation is just the product of the spontaneous equilibrium fluctuation
conditional probabilities P0(C, t|C0, 0) in state 1 corrected by the presence of the perturbation
term εB(C).3 Inserting (26) into (25) and expanding the exponential up to linear order we get

〈A(t)〉ε − 〈A〉0 = βε
∑
C,C0

A(C)[B(C) − B(C0)]P0(C0)

= βε[〈A(t)B(t)〉0 − 〈A(t)B(0)〉0]. (27)

3 Relation (26) is only valid for C0 
= C. Indeed, the normalization condition of conditional probabilities∑
C Pε(C, t|C0, 0) = 1 implies that Pε(C, t|C, 0) 
= P0(C, t|C, 0) so relation (26) does not hold for C0 = C. The

difference between both probabilities Pε(C, t|C, 0), P0(C, t|C, 0) does not matter as the transition C → C does not
contribute to the response function in (27).
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If we define the correlation function and time-dependent susceptibility as

CA,B(t, s) = 〈A(t)B(s)〉0 (28)

χA,B(t) = lim
ε→0

〈A(t)〉ε − 〈A〉0

ε
(29)

then from (27) we get the integrated form of the FDT relation

χA,B(t) = β[CA,B(t, t) − CA,B(t, 0)]. (30)

The static form of the FDT (20) is easily obtained from (30) by taking A = B and the limit
t → ∞. In this case χA,A(t) → χA (cf (22)) and CAA(t, t) = 〈A2〉0 while CAA(t, 0) → 〈A〉2

0
as correlations factorize for infinitely separated times.

Sometimes the FDT relation is written in a differential form by considering the two-times
response or retarded Green function,

RA,B(t, s) = δ〈A(t)〉
δε(s)

t > s (31)

which gives the response to an impulsive perturbation ε(s) acting at time s. Causality imposes
that the response function RA,B(t, s) is zero for t < s: perturbations cannot propagate
backwards in time. The susceptibility χA,B(t) is the integral of the response function RA,B(t, s)

then, using (30),∫ t

0
RA,B(t, s) ds = χA,B(t)

= β[CA,B(0) − CA,B(t)]

= β

∫ t

0

∂

∂s
CA,B(t, s) ds. (32)

The last equality, and the arbitrarity of time t, implies that

RA,B(t, s) = β
∂

∂s
CA,B(t, s)θ(t − s). (33)

This is the differential form of the FDT relation.

3. The master equation approach

In this section, we introduce the master equation for the dynamical evolution of a generic
system and show how the FDT arises within this approach. Besides the previous derivation in
section 2.3, many other derivations of the FDT exist. We give a few collections of references
where these are presented. Derivations can be classified in two families: deterministic or
stochastic. Deterministic approaches are linear response theory [25], operator formalism for
master equations [26] and quantum statistical mechanics [27]. Stochastic approaches are the
Langevin and Fokker–Planck equations [28]. Here we present a stochastic derivation which
is convenient for the purpose of the present review.

3.1. The master equation (ME)

Any dynamical law describing the evolution of a system is a rule which for each system
configuration C associates a new configuration C ′. The time is just a label for bookkeeping
the sequence so generated. Therefore, to simplify the presentation and the notation we shall



R192 Topical Review

consider the time as an integer variable giving the equivalent expressions for the continuous
limit when needed. This picture also has the advantage of being more closely related to
numerical simulations since all numerical methods use discrete time schemes.

The dynamics can be encoded into the conditional or transition probability W(C, t|C ′,
t − 1) of going from configuration C ′ at time t − 1 to configuration C at time t. Indeed if
P(C, t) denotes the probability that the system at time t is in the configuration C, then from
the Bayes theorem it follows that

P(C, t) =
∑
C′

W(C, t|C ′, t − 1)P (C ′, t − 1) (34)

and the W(C, t|C ′, t − 1) together with the initial condition P(C, 0) fully define the dynamical
evolution of the system in the phase space. Equation (34) is an identity valid for all processes
and is the first of a hierarchy of equations for joint probabilities. Only if the process is
Markovian, i.e., only if the conditional probability is determined entirely by the knowledge
of the most recent past, can the hierarchy then be closed. Equation (34) and probability
conservation at all times

(∑
C′ P(C ′, t) = 1

)
imply that W(C, t|C ′, t − 1) must satisfy the

normalization condition∑
C′

W(C ′, t|C, t − 1) = 1 for all C and t . (35)

In the continuous time limit (34) is not well defined. To have an expression valid in this limit
one then considers the variation of P(C, t) between two successive times which, using the
normalization condition (35), reads

P(C, t + 1) − P(C, t) =
∑
C′

W(C, t + 1|C ′, t)P (C ′, t) −
∑
C′

W(C ′, t + 1|C, t)P (C, t). (36)

Dividing both sides of this equality for the time increment �t and taking it to zero, we get the
master equation (ME)

∂P (C, t)

∂t
=

∑
C′

W(C|C ′; t)P (C ′, t) −
∑
C′

W(C ′|C; t)P (C, t) (37)

where W(C ′|C; t) = lim�t→0 W(C, t + �t|C ′, t)/�t is called the transition rate and gives the
transition probability per unit of time. Solving the ME is often an extremely difficult and
unaffordable task, even in the Markovian case.

Loosely speaking, the transition probability W(C, t|C ′, t − 1) can be seen as a transition
rate for a unit time interval (�t = 1), thus in what follows we shall not make a distinction
between transition probabilities and transition rates and shall call them generically transition
rates using for both the notation W(C ′|C; t). Which one is appropriate will be clear from the
context.

Transition rates depend on the specific dynamical rules and hence by the Hamiltonian
and eventual constraints (holonomic or non-holonomic). Let the system under consideration
be described by an Hamiltonian which can depend on time through a set of time-dependent
external parameters λ

j
t . For instance, λt may denote an time-dependent external pressure

applied to a liquid or a time varying electric or magnetic field applied in a dielectric or a
magnetic medium. We shall denote the set of these parameters by the vector λt and the
Hamiltonian by Hλt

(C) to indicate the time dependence through λt . Accordingly we shall
also denote W(C|C ′, t) by Wλt

(C|C ′). If the Hamiltonian is time independent either λt or just
the subindex t will be dropped, depending on the context.
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Regardless of their form the transition rates must satisfy the following requirements:

• Non-negativeness and normalization. The Wλt
(C|C ′; t) are probabilities so they must be

non-negative and satisfy the normalization condition (35).
• Ergodicity. Transition rates must be such that starting from any configuration any other

configuration of a finite system can be visited in a finite time. For continuous variables
the condition is stated by considering an arbitrary finite phase space region around a given
point (‘neighbourhood’).

• Detailed balance. If the λ are time independent the equilibrium distribution P
eq
λ (C) is

the stationary solution of the ME (37). A sufficient condition for this is that the transition
rates be time independent and

Wλ(C ′|C)

Wλ(C|C ′)
= P

eq
λ (C ′)

P
eq
λ (C)

. (38)

This condition receives the name of detailed balance. Different equilibrium ensembles
are thus encoded into the different forms of transition rates. The Perron–Frobenius
theorem assures [29] that this condition, together with non-negativeness, normalization
and ergodicity guarantees that the equilibrium distribution in a finite system is reached in
a finite time.

• Causality. This is an important assumption for the time-dependent transition rates and
means that future is only determined by the past, i.e., a perturbation applied at a given
time can only propagate forwards in time and not backwards. The consequence of this is
that the transition rates must depend only on the values of λt taken at the lowest time t.

For arbitrary time-dependent λt the stationary solution of ME will, in general, also
depend on time. In this case, however, the previous conditions, and in particular the detailed
balance condition, are not enough to determine the stationary state which in general will not be
Gibbsian, i.e., not described by the Boltzmann–Gibbs distribution. Only when λt can be treated
as small perturbations can some predictions be obtained from the linear response
theory.

3.2. Correlations, responses and the FDT

Consider two arbitrary observables A(C), B(C) which for simplicity are assumed time
independent. These can be either local or global quantities defined over a microscopic
or macroscopic region respectively. For instance, in a liquid an observable could be the
local density at a point or the total mass of a given macroscopic region. In systems with
discrete variables such as magnetic systems, it can be a spin of a given magnetic atom or the
magnetization of a macroscopic part of the system.

The two-times correlation function CA,B(t, s) between A(t) and B(s) is defined as the
average 〈A(t)B(s)〉 over all possible dynamical paths from time 0 to time t and all possible
initial conditions weighted by the probability distribution P(C, 0),

CA,B(t, s) = 〈A(t)B(s)〉 =
∑
C,C′

A(C ′)P (C ′, t|C, s)B(C)P (C, s) (39)

where P(C ′, t|C, s) is the conditional probability to evolve from C at time s to C ′ at later time t.
Unless otherwise stated, in what follows we shall adopt the convention that t � s.

To simplify the notation, we switch to discrete (integer) time variable so that a dynamical
path from time 0 to time t is given by a sequence of t configurations {C0, C1, . . . , Ct }, along
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which λ takes the sequence of values {λ0,λ1, . . . ,λt }. In this case, using (34), the correlation
can be easily rewritten in terms of transition rates as

CA,B(t, s) =
∑

Cs ,...,Ct

A(Ct )

[
t−1∏
k=s

Wλk
(Ck+1|Ck)

]
B(Cs )P (Cs , s) (40)

where we have used the short-hand notation Wλk
(Ck+1|Ck) ≡ Wλk

(Ck+1|Ck; k).
In equilibrium, correlations satisfy the time translational invariance (TTI) property:

CA,B(t, s) = CA,B(t − s). Indeed in this case P(Cs , s) is replaced by P eq(Cs) and the
transition rates satisfy the detailed balance condition (38):

Wλ(Ck+1|Ck) = Wλ(Ck|Ck+1)
P

eq
λ (Ck+1)

P
eq
λ (Ck)

. (41)

Inserting this relation into (40) the factors P eq(Ck) in the numerator and denominator of the
product cancel one by one and, exchanging the indices t ↔ s, we obtain

CA,B(t, s) =
∑

Cs ,...,Ct

A(Ct )P
eq
λ (Ct )

[
t−1∏
k=s

Wλ(Ck+1|Ck)

]
B(Cs )

= (t ↔ s)

=
∑

Ct ,...,Cs

B(Ct )

[
s−1∏
k=t

Wλ(Ck|Ck+1)

]
A(Cs)P

eq
λ (Cs)

= 〈B(t)A(s)〉
= CB,A(t, s) (42)

which implies that CA,B(t, s) = CA,B(t − s).
The correlation function CA,B(t, s) is a measure of how the system loses memory of its

past history and hence decays for large time separations. To measure how a system responds to
external perturbations one introduces the response functions. Similar to correlations, responses
also tend to decay with time because the effect of the perturbation is progressively forgotten
in a thermal environment. However, there is an important difference between correlations and
responses: causality. While two observables can be correlated forwards or backwards in time,
a perturbation cannot propagate backwards in time and the response of the system for times
before the perturbation is applied must be zero. Nevertheless, despite this difference, response
and correlations can be treated on equal footing by employing a supersymmetric formalism.
The interested reader can find more details, e.g., in the classical book by Zinn-Justin [28].

To study the response of the system to an external perturbation, we assume that at time s
an impulsive perturbation of small intensity ε is applied to the observable B(C) and measure
the variation of the average value of an observable A(C) at later times. The response function
RA,B(t, s) is defined in the limit of vanishing perturbation strength as

RA,B(t, s) = lim
ε→0

〈A(t)〉εs
− 〈A(t)〉0

ε
t > s (43)

with

〈A(t)〉εs
=

∑
C

A(C)Pεs
(C, t) (44)

〈A(t)〉0 =
∑
C

A(C)P0(C, t) (45)
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where Pεs
(C, t) and P0(C, t) are the probabilities that the system is in the configuration C at

time t > s in the perturbed and unperturbed cases, respectively. If the system is described
by the unperturbed Hamiltonian H0(C), then in presence of the perturbation the Hamiltonian
becomes

Hεs
(C) = H0(C) − δt,sεB(C). (46)

By using (34) and the fact that the Hamiltonians only differ at time s when the impulse is
applied, the probabilities Pεs

(C, t) and P0(C, t) can be written as

Pεs
(Ct , t) =

∑
Cs ,...,Ct−1

[
t−1∏

k=s+1

W0(Ck+1|Ck)

]
Wε(Cs+1|Cs)P0(Cs , s) (47)

P0(Ct , t) =
∑

Cs ,...,Ct−1

[
t−1∏

k=s+1

W0(Ck+1|Ck)

]
W0(Cs+1|Cs)P0(Cs, s) (48)

where W0,ε denotes the transition rates in the unperturbed/perturbed case, and we have used
the short-hand notation W(Ck+1|Ck) ≡ W(Ck+1|Ck; k).

Because we are interested in the ε → 0 limit the transition rates in the perturbed and
unperturbed cases can be related by expanding the detailed balance condition (38) for the
perturbed state around ε = 0 up to the first order in ε,

Wε(C ′|C)

Wε(C|C ′)
= P

eq
ε (C ′)

P
eq
ε (C)

= W0(C ′|C)

W0(C|C ′)

{
1 + ε

∂

∂ε
ln

[
P eq

ε (C ′)
/
P eq

ε (C)
]∣∣∣∣

ε=0

+ O(ε2)

}
(49)

where P
eq
ε (C) is the equilibrium probability distribution in the perturbed state4. In general we

can write

log
[
P eq

ε (C)
] = log

[
P

eq
0 (C)

]
+ φ0 − φε + βεB(C) (50)

where φ denotes the corresponding thermodynamic potential. For instance, in the canonical
ensemble it corresponds to minus the Helmholtz free energy F while in the grandcanonical
ensemble it corresponds to the grandcanonical potential given by the pressure times the volume.

Using (49) we finally obtain, to the leading order in ε,

Wε(C ′|C) − W0(C ′|C) =
[

Wε(C|C ′)
W0(C|C ′)

− 1

]
W0(C ′|C) + ε

∂

∂ε
ln
[
P eq

ε (C ′)
/
P eq

ε (C)
]∣∣∣∣

ε=0
W0(C ′|C).

(51)

The physical meaning of the two terms appearing in this expression is different. The first
term, absent in the Onsager postulate (26), accounts for the variation due to the change in
the transition rates and does not directly depend upon the particular form of the equilibrium
4 An observation concerning (49) and its relation with the Onsager postulate (26) is important. Ideally, in order to
demonstrate FDT, one would like to have a relation similar to (26) relating the unperturbed and the perturbed rates
rather than a relation between the forward and backward rates as given in (49). However, such a relation does not
exist as it depends upon the type of dynamics through the particular form of the transition rules. For instance, by
considering rates of the type Wλ(C ′|C) ∝ P

eq
λ (C ′), i.e. depending only upon the final configuration, one finds that (26)

automatically holds. However, such rates cannot be used to derive the FDT (33), (55) as they lead to the trivial identity
0 = 0 because any impulse does not affect dynamics at later times R(t, s) = 0 and there are no time correlations. In
other words, the Onsager postulate extended to the non-equilibrium regime generates violation terms different from
those obtained in the present approach (for instance the term R(1) in the rhs of (59)).
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distribution. The second term depends directly on the equilibrium distribution. This distinction
is important since they give different contributions to the response. For the response function
(43) to be well defined the difference 〈A(t)〉ε − 〈A(t)〉0 must be at least linear in ε. This
requirement is at the roots of the applicability of linear response theory and implies that both
terms in (51) must be at least linear in ε. Concerning the first term, it is required that the
difference Wε(C|C ′)/W0(C|C ′) − 1 be linear in ε, so the transition rates must change linearly
with ε when the system is perturbed. This means that, during the dynamics, and after applying
the perturbation, one cannot switch arbitrarily from one class of dynamics to another class of
dynamics in a random fashion. To better illustrate what this means let us consider a Monte
Carlo stochastic dynamics. There are different possible algorithms or transition rules which
fulfil detailed balance (e.g. Metropolis, heat-bath, Glauber). One could imagine switching
randomly from one algorithm to another one while doing the dynamics. Nothing forbids this
quite artificial choice. But, when measuring the response function, it is required that the
same time sequence of algorithms must be used for the unperturbed and perturbed dynamical
evolutions. Usually, the same algorithm is chosen in a given simulation so one does not
care about this subtlety. For the second term, we require that (∂/∂ε) ln

[
P

eq
ε (C ′)

/
P

eq
ε (C)

]∣∣
ε=0

be finite. Inspection of (50) reveals that this holds if the observable B(C) does not jump
discontinuously when the perturbation is switched on. This condition requires that the system
is not at a first order transition point. This situation is encountered, for instance, by perturbing
the Ising model at zero temperature with a uniform magnetic field.

Inserting (51) into (43) the response function decomposes into two parts,

RA,B(t, s) = R
(1)
A,B(t, s) + R

(2)
A,B(t, s) (52)

where

R
(1)
A,B(t, s) = lim

ε→0

1

ε

∑
Cs ,...,Ct

A(Ct )

[
t−1∏

k=s+1

W0(Ck+1|Ck)

][
Wε(Cs |Cs+1)

W0(Cs |Cs+1)
− 1

]
W0(Cs+1|Cs)P0(Cs, s)

(53)

R
(2)

A,B(t, s) =
∑

Cs ,...,Ct

A(Ct )

[
t−1∏

k=s+1

W0(Ck+1|Ck)

]

× ∂

∂ε
ln
[
P eq

ε (C ′)
/
P eq

ε (C)
]∣∣∣∣

ε=0
W0(Cs+1|Cs)P0(Cs , s). (54)

Inserting (50) for the second term we get

R
(2)
A,B(t, s) =

〈
A(t)

∂ ln P
eq
ε (Cs+1)

∂ε

∣∣∣∣
ε=0

〉
0

−
〈
A(t)

∂ ln P
eq
ε (Cs)

∂ε

∣∣∣∣
ε=0

〉
0

(55)

which using (50) becomes

R
(2)
A,B(t, s) = β〈A(t)B(s + 1)〉0 − β〈A(t)B(s)〉0. (56)

In the limit of continuous time R(2) in (56) must be replaced by

R
(2)

A,B(t, s) = β
∂

∂s
〈A(t)B(s)〉0 . (57)

The first term R(1) cannot be expressed in a simple form. Only in equilibrium it is possible to
show that it vanishes. To prove it requires the following steps: first use the identity

t−1∏
k=s+1

W0(Ck+1|Ck) =
[

t−1∏
k=s+1

W0(Ck|Ck+1)

]
P

eq
0 (Ct )

P
eq
0 (Cs+1)

(58)
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and then the normalization (35). Collecting all terms we finally obtain for the response function

RA,B(t, s) = R
(1)
A,B(t, s) + β

∂

∂s
〈A(t)B(s)〉0. (59)

In equilibrium, besides R(1) = 0, the correlation function satisfies TTI, so from (59) we
get the equilibrium FDT

R
eq
A,B(t − s) = β

∂

∂s
C

eq
A,B(t − s) = −β

∂

∂t
C

eq
A,B(t − s) t > s. (60)

The term R(1) may also vanish in the non-equilibrium state if the first term in (51) vanishes
faster than linearly with ε for ε → 0. In this case (59) reduces to the usual FDT relation (33):

RA,B(t, s) = βθ(t − s)
∂

∂s
CA,B(t, s). (61)

Therefore, the lowest time s has a special role in the relation (59) between correlations and
responses. This is not a surprise since the relation has been obtained by assuming causality
which privileges the lowest time. In equilibrium, the role of the lowest time disappears because
the system is TTI.

3.3. The component master equation

Let us now divide the phase space into different non-overlapping subsets R that can be called
regions, phases, components or domains. In what follows, if not stated otherwise, we shall
use the term component. Later in section 4.2 we will see that the reduction of the phase
space by a suitable partitioning can be relevant for the study of the non-equilibrium regime in
glassy systems and in particular for the understanding of the FDT relations. For the moment,
however, we do not attach any physical meaning to such a partitioning, and assume it to be
completely arbitrary, postponing the identification of a suitable partitioning scheme for glassy
systems to section 4.5.

For each partition of the phase space the probability P(R, t) that the system is in the
component R at time t is given by

P(R, t) =
∑
C∈R

P(C, t) (62)

∑
R

P(R, t) = 1 (63)

where the normalization condition (63) follows from normalization of P(C, t) and the non-
overlapping assumption on R. The probability distribution P(R, t) obeys the master equation
obtained by projecting the (microscopic) master equation (37) over the component space. The
Markovian character of the dynamics is preserved under projection. Summing (37) over all
configurations C belonging to a given component R we get the component master equation,

∂P(R, t)

∂t
=

∑
R′

W(R|R′; t)P(R′, t) −
∑
R′

W(R′|R; t)P(R, t) (64)

where W(R′|R; t) are the component transition rates which in terms of the original transition
rates W(C ′|C; t) read

W(R′|R; t) =
∑

C′∈R′,C∈R W(C ′|C, t)P (C, t)

P(R, t)
. (65)
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The component transition rates satisfy the same normalization conditions as W . For example,
in the case of discrete time we have (cf (35))∑

R′
W(R′, t|R, t − 1) = 1 for allR and t . (66)

However, there is an important difference between the (microscopic) master equation (37) and
component master equation (64): the transition rates (65) are time dependent even in time-
independent Hamiltonians since they are computed with the run-time configuration probability
distribution function P(C, t). A direct consequence of this is that, while the properties of non-
negativeness, normalization, ergodicity and causality discussed in section 3.1 for W do apply
to W , the detailed balance is not valid anymore in the component space. Indeed from (65) it
follows that

W(R′|R; t)

W(R|R′; t)
=

∑
C∈R,C′∈R′ W(C ′|C)P (C, t)∑
C∈R,C′∈R′ W(C|C ′)P (C ′, t)

× P(R′, t)
P(R, t)

. (67)

The detailed balance condition is recovered, however, at equilibrium where W , according to
(65), becomes time independent,

Weq(R′|R) =
∑

C∈R,C′∈R′ W(C ′|C)P eq(C)

Peq(R)
(68)

wherePeq(R) denotes the equilibrium probability distribution function in the component space
associated through (62) with the phase space equilibrium probability distribution function
Peq(C). Using the detailed balance condition (38) we obtain

Weq(R′|R)

Weq(R|R′)
= Peq(R′)

Peq(R)
(69)

which is the detailed balance condition in the component space.
In conclusion, in the component space the rates W satisfy the same set of conditions as

the rates W except for the detailed balance condition which in the component space only holds
at equilibrium. In general, rates W do not satisfy detailed balance so the FDT derived in the
previous sections for the microscopic master equation will not be valid in the component space.
They are, however, valid in equilibrium so, for example, after an appropriate redefinition of
correlations and responses the equilibrium fluctuation–dissipation theorem (60) still holds in
the component space.

4. FDT extensions to the non-equilibrium regime

In this section, we discuss how to extend the previous ideas to the non-equilibrium glassy
regime. After a brief introduction of aging (intended for the non-specialist) we discuss how to
derive a free-energy master equation by introducing the configurational entropy and the notion
of the effective temperature. We then discuss how to extend the FDT beyond equilibrium by
introducing the fluctuation–dissipation ratio and the quasi-FDT. This requires the notion of
neutral observables. Finally, a possible partitioning scheme is presented.

4.1. An intermezzo on aging

In this section, we discuss one of the main signatures of the non-equilibrium regime of glassy
systems, i.e. the existence of aging and the quantifying of FDT violations through a modified
FDT in terms of a set of effective temperatures. This discussion is intended for the inexpert
reader who wants to have a glance at the key aspects of glassy systems before entering the
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more detailed exposition. Therefore, the level of this discussion is highly introductory and the
expert reader can move directly to the next section.

In relaxational glassy systems the two basic properties of correlations and response, time
translational invariance (TTI) (42) and the FDT (60), no longer hold. In particular, TTI is
observed to be violated in the following way: both correlations and responses decay slower
as the system gets older, i.e. the system is aging. This fact stems from several experimental
observations in polymers and deformable materials [1], structural glasses [30] and spin glasses
[13]. In driven systems the situation appears less complicated as TTI holds and only the FDT
is violated. Some of the aspects described below carry over also to driven systems, however
for sake of clarity we will stick in what follows to the case of aging systems.

Experimentally, aging is manifest through the measurement of the so-called integrated
response function (IRF) or time-dependent susceptibility described in section 4.3. In aging
systems, the weak long-term memory makes response functions R(t, s) hardly measurable as
they asymptotically decay to zero, instead it is easier to measure the cumulative response or
time-dependent susceptibility χ(t, s) = ∫ t

s
R(t, t ′) dt ′ (defined after perturbing the system at

the waiting time s, often denoted as tw) which in general are finite: in dielectric measurements
of glasses the IRF corresponds to the polarizability of the sample after cutting or applying an
electric field; in magnetic systems it corresponds to the thermoremanent or zero field cooled
susceptibility; in mechanical systems aging is observed by measuring the deformation of
the sample after applying a tensile load. All these measurements reveal that χ(t, s) is well
approximated by the sum of two contributions,

χ(t, s) = χst(t − s) + χag(t, s) (70)

where the first contribution χst(t − s) stands for a stationary part that asymptotically decays to
a finite value or plateau and χag(t, s) is the aging part that is well approximated by the scaling
relation,

χag(t, s) = χ̂

(
t

s

)
. (71)

This scaling behaviour, that is obtained within many solvable models, is known as full aging
or simple t/s scaling5. However, deviations from full aging have been reported in many
experiments suggesting that this simple scaling behaviour does not fully account for the
experimental data. In particular, spin-glass measurements clearly favour a subaging scenario
where χ̂ has as scaling argument the variable t

sδ with δ < 1 (we note, however, that experiments
report values around 0.95, i.e. very close to 1). The physical origin of these deviations is still
unknown. For both correlation and response functions similar decompositions as in (70), (71)
are expected to be valid but replacing χ by C or R (however, for the aging part of the response
there is an additional factor 1/t multiplying Rag(t, s)) . Correlations and responses are difficult
to experimentally access. In theoretical or numerical simulation studies, the calculation of
correlation functions is always preferred. Typical curves for the susceptibilities or correlations
are depicted in figure 2. Within the full aging scenario (71) it is usually shown that, in the
asymptotic limit where both s and t are large, the FDT (60) is violated depending on the ratio
(t − s)/s. If (t − s)/s � 1, C(t, s) � Cst(t − s) and FDT holds,

∂Cst(t − s)

∂s
= T Rst(t − s). (72)

However, in the other case (t −s)/s � 1, then C(t, s) � Cag(t, s) and the FDT (60) is violated
according to the new relation,

∂Cag(t, s)

∂s
= Teff(s)Rag(t, s) (73)

5 A coarsening system also deviates from the simple form (71) in favour of χag(t, s) = s−aχ̂(t/s) with a � 0.
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Figure 2. Typical shape of a two-times correlation function C(t, tw) (the same would be valid for
the integrated susceptibility χ(t, tw)), plotted as a function of t − tw (in log scale) with system age
tw increasing from left to right. The decomposition (70) shows the two separate time sectors: in
the first fast part of the relaxation C(t, tw) � Cst(t−tw) is independent of s and obeys TTI while the
slow second part Cag(t − tw) decays from the plateau on a timescale growing with tw . This figure
has been taken from a lattice gas coarsening model [31] with properly normalized correlations at
equal times C(t, t) = 1.

where Teff(s) is a new parameter that enters the new relation playing the role of an effective
temperature. The particular way in which the FDT is violated suggests calling the new
relation (73) a quasi-fluctuation–dissipation theorem (QFDT). Although other possible terms
have been used to refer to the modified FDT, here we will adhere to the term QFDT, as this
is the one originally introduced by Horner [32] that expresses the idea of partial equilibration
among a subset of degrees of freedom.

Aging carries the associated decomposition of time into time sectors. In the previous
example of full aging (71) there are two time sectors depending on the ratio (t − s)/s as
described in (72), (73). However, as we have already mentioned, deviations from the full
aging behaviour are expected to be present in general. In those cases, the stationary result (72)
for the short-time sector still holds but (73) is replaced by the more general relation,

∂Cag(t, s)

∂s
= Teff(Cag(t, s))Rag(t, s) (74)

where the new effective temperature Teff(Cag(t, s)) ≡ Teff(C(t, s)), since C ≡ Cag when
(t − s)/s ∼ O(1), and depends on both times only through the value of C. In this case, the
aging part develops time sectors defined as those values of t, s where t/s ∼ O(1) [33, 34].
Each sector is then labelled by the value of the correlation function C(t, s) and many effective
temperatures arise in the description of the non-equilibrium regime, the QFDT (74) quantifying
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Figure 3. FD plots for the three possible scenarios. From bottom to top: (1) RS models or
coarsening systems with two timescales and two temperatures (one identical to the bath, the other
infinite), (2) one-step RSB models with two timescales and two temperatures (one identical to the
bath, the other finite but higher than that of the bath), (3) full RSB models with many timescales
and temperatures. For C > qEA (the Edwards–Anderson parameter), i.e., the stationary regime,
all models satisfy FDT (the dashed line).

FDT violations within each sector. Glassy systems are often classified into three different
groups according to the dependence of Teff(C). For coarsening systems Teff(C) only takes
two values: T and infinity for the stationary and aging regimes respectively6. For structural
glasses Teff(C) also takes two values: T and Teff(s) > T for the stationary and aging regimes
respectively. These are often referred to as two-timescale systems. Finally, for spin-glass
systems Teff(C) takes a continuous spectrum of values extending from a lower bound T ∗ > T

up to infinity. These are known as many-timescale systems. All these three limit cases
correspond to a well-known static low-temperature description in the framework of spin-glass
theory [35] in terms of replica symmetry breaking (RSB): coarsening systems are those where
replica symmetry (RS) is unbroken, structural-glass systems correspond to one step of RSB
while spin-glass systems correspond to full RSB. As a particular example of one-step systems
there are some models (such as entropy barrier models, see section 6.5) that display glassy
behaviour only at zero temperature. The stationary regime is then absent in these models and
their non-equilibrium dynamics is characterized by a single effective temperature, the bath
temperature being zero. Throughout this review, we will often refer to them as one-timescale
models. The three possible scenarios are depicted in figure 3 (see section 4.3 for a more
detailed exposition). The experimental challenge of these ideas remains one of the most
awaited results.

4.2. The unbiased component ensemble and the master free-energy equation

One of the key ideas behind the existence of a quasi-fluctuation–dissipation theorem (QFDT)
in aging systems is the emergence of a non-equilibrium ensemble in the asymptotic long-time
regime of the relaxation process. A related non-equilibrium ensemble could also emerge in
driven stationary systems. Although the nature of this ensemble is yet to be understood we

6 We note however that in some special cases coarsening systems can display more complex behaviour of Teff(C),
see sections 6.6 and 7.3 and the discussion in section 13.1 in [3].
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can anticipate some of its main properties. Some of these ideas have already been presented
[36]. Here we present more elaborated work.

In a description of glassy phenomena where the system is kept in contact with a thermal
bath at temperature T the energy is not constant and equipartition does not necessarily hold.
Therefore this ensemble is neither microcanonical nor canonical but of a more complicated
nature.

The possible existence of a non-equilibrium ensemble traces back to Palmer [37] who
introduced the unbiased component ensemble to characterize the equilibrium sampling of
phase space components. Let us consider a given partition of phase space into components
(see section 3.3) and let us define the free energy F(R) of a given component R by

F(R) = −T log

(∑
C∈R

exp(−βH(C))

)
. (75)

It is possible to extend this idea to the non-equilibrium regime by assuming an equal
probability hypothesis: different components with identical free energy F(R) do have the
same probability,

P(R, t) = P(F (R), t). (76)

In what follows, we will use the letter F (as opposed to F(R)) to denote component free
energies defined in (75) after dropping the explicit argument R. The existence of the unbiased
ensemble is tantamount to the appearance of a new measure based on free energy rather than
on energy. Contrary to Palmer [37] (who assumes an equilibrium probability distribution for
P(F, t), see (87) below) the probability distribution P(F, t) is unknown, time dependent and
must be found as a solution of a master equation (ME) as follows. To derive the free-energy
ME we define the probability density

P(F, t) =
∑
R

P(R, t)δ(F − F(R)) = P(F, t)�(F, T ) (77)

where we have used (76) and the definition

�(F, T ) =
∑
R

δ(F − F(R)) (78)

and we have introduced explicitly the temperature dependence in � to stress the temperature
dependence of the free energy (75). Although consistency requires adding the T dependence
also to F here we drop this dependence in order to lighten the notation. Equation (77)
describes the probability for the system to be in a component of free energy F at time t. We
have indicated it in bold to distinguish it from the probability P(R, t). Summing (64) over
components having identical free energy F we get

∂P(F, t)

∂t
=

∑
F ′

P(F ′, t)Zt (F |F ′) −
∑
F ′

P(F, t)Zt(F ′|F) (79)

with the conditioned probabilities Zt defined by

Zt(F |F ′) = 1

P(F ′, t)

∑
R,R′

W(R|R′; t)δ(F(R) − F)δ(F ′(R′) − F ′)P (R′, t) (80)

where the W have already been defined in (67). Note that both W and Zt are time-dependent
rates. Again, as for the transition probabilities (65), the new rates Zt(F |F ′) do not satisfy
detailed balance but satisfy the other requirements (non-negativeness,ergodicity and causality).
Expression (80) is exact but intractable. As we are postulating the existence of the unbiased
component ensemble (76), consistency in the component master equation (64) implies that
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the rate W(R,R′; t) is a time-dependent function of the initial and final components, only
through the value of their free energies F(R′),F(R),

W(R,R′; t) = Wt (F(R),F(R′)). (81)

The transition rates (80) can be further simplified,

Zt(F |F ′) = Wt (F |F ′)�(F, T ). (82)

The quantity �(F, T ) is exponentially large with the volume of the system and defines what
we will denote as the configurational entropy or complexity Sc(F, T ),7

�(F, T ) = exp(Sc(F, T )). (83)

Therefore, all the information on the master equation (79) goes into the density of components
Sc(F, T ) and the rates Wt (F |F ′). These contain all the information about the properties of
the unbiased ensemble.

The description of glassy dynamics in terms of a master free-energy equation such as (79)
has been wandering around for many years in the literature of the field. Several equations
have appeared scattered in the literature during the last decades, but generally written in terms
of the energy instead of the free energy, see for instance [38]. These equations describe what
are usually known as trap models (see section 6.4). Example master equations are proposed
by Dyre [39] and Bouchaud [40]. Other attempts include granular media [41].

4.2.1. Complexity and the effective temperature. Before closing the present discussion
let us note that, in equilibrium, both the transition rates Zt(F |F ′) and Wt (F |F ′) are time
independent and satisfy detailed balance,

Zeq(F ′|F)

Zeq(F |F ′)
= exp(−β(�(F ′, T ) − �(F, T ))) (84)

Weq(F ′|F)

Weq(F |F ′)
= exp(−β(F ′ − F)) (85)

with

�(F, T ) = F − T Sc(F, T ) (86)

where �(F, T ) is a new potential where the free energy appears balanced by the complexity.
The probability (77) assumes the simple form,

Peq(F) = exp(−β�(F, T ))

Z(β)
(87)

where Z(β) is given by (14). We will describe in section 5.1.2 how this relation provides us
with a tool to obtain the configurational entropy as function of both the free energy and the
temperature.

The hints on the existence of this new potential were found by Kirkpatrick, Thirumalai and
Wolyness [42–44] who identified the marginal transition TA (‘A’ standing for activated) as the
temperature below which different metastable states concur in such a number to compensate the
lower equilibrium free energy of the paramagnetic or liquid state. The subindex in TA stands for
7 The term configurational entropy has often been used with different meanings, leading to confusion. Originally, as
used by Adam and Gibbs for their thermodynamic theory, it denotes the part of the total entropy including only the
configurational degrees of freedom. More recently, in the context of spin-glass theory, this concept has been coined to
denote that part of the configurational entropy that counts the number of metastable states rather than configurations.
It is with this last meaning that we understand it here. For a thorough discussion of this concept see section 5.1.
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the fact that below that temperature activation is dominant and relaxation occurs in the form of
activated jumps from one metastable state to another. TA is identified with the mode-coupling
transition temperature Tc of mode-coupling theories (see section 6.1) and corresponds to a
spinodal instability [42–44]. The mathematical argument behind the compensation of the free
energy of metastable states by the complexity is as follows. Let us decompose the canonical
partition function of the system as a sum over a set of non-overlapping components R (as
explained in section 3.3),

Z(T ) =
∑
C

exp(−βH(C)) =
∑
R

exp(−βF(R))

=
∑
F

�(F, T ) exp(−βF) =
∑
F

exp(−β�(F, T )) (88)

where we have used definition (75) for the free energy of components F(R) and (83), (86).
Due to the extensive character of the variables F, Sc(F, T ) and �(F, T ), the dominant
contribution to the sum in (88) is evaluated through the saddle point method. At each
temperature T there is a free energy F ∗(T ) such that its contribution to the exponent (88) is
dominant, i.e. Z(T ) ∼ exp(−β�∗(T )) where we have defined �∗(T ) = �(F ∗(T ), T ). The
behaviour of this solution depends on the shape of the function Sc(F, T ). In general, this
function is a monotonically increasing function of the free energy F . Because the exponential
is a positive definite function we have �(F, T ) � Fpara(T ) where Z(T ) = exp(−βFpara(T ))

and Fpara(T ) denotes the paramagnetic free energy.
Above TA there is no solution F ∗(T ) which can compensate the equilibrium paramagnetic

free energy and �(F, T ) > Fpara(T ). Below TA a solution appears F ∗(T ) such that
�∗(T ) = Fpara(T ) and gives the dominant contribution to (88) so F ∗(T ) satisfies the saddle
point relation,

1

T
= ∂Sc(F, T )

∂F

∣∣∣∣
F=F ∗(T )

. (89)

The identity �∗(T ) = Fpara(T ) implies Fpara(T ) = F ∗(T ) − T Sc(F
∗(T ), T ). This means

that for T � Tc there is a band of components with free energy F ∗(T ) � Fpara(T ) (therefore
with free energy above the equilibrium one) whose difference with Fpara(T ) is compensated by
the complexity S∗(T ) = Sc(F

∗(T ), T ). This solution exists as long as S∗(T ) > 0. Because
Sc(F, T ) is a monotonically increasing function of F and both F ∗(T ), S∗(T ) decrease with
T there is a temperature TK at which S∗(TK) = 0. Below this temperature, the complexity
vanishes and the solution F ∗(T ) ceases to change with temperature (so equation (89) does
not hold anymore) but sticks to its minimum value F ∗(TK). This is the entropy crisis scenario
where TK corresponds to the Kauzmann temperature [45].

In mean-field models it has been shown [46] that the complexity Sc(F, T ) defines a
free-energy dependent effective temperature through the relation,

1

Teff(F)
= ∂Sc(F, T )

∂F
. (90)

From this relation, it emerges that the configurational entropy plays the role of the
thermodynamic potential associated with the effective temperature. Similarly, the entropy
is the potential conjugated to bath temperature in the microcanonical ensemble. However,
(90) has only been derived in mean-field models close to the asymptotic free-energy threshold
where lower free-energy states are inaccessible [46, 47]. In models that do not have a
marginal free-energy threshold above the equilibrium value, it is possible to show that free
energies are uncorrelated random variables exponentially distributed [48, 35]. The extension
of these results beyond mean-field where all free-energy states are accessible through activated
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processes is at the roots of the existence of the unbiased component ensemble. Some attempts
have been proposed in [49–51]. In particular, it would be very interesting to understand
the general form of the transition probabilities Zt as these lead to very specific predictions
amenable to numerical checks. The exponential character of the free-energy distribution of
the lower free-energy states below the threshold, and the fact that this distribution is time
dependent (as shown by the fact that Zt is itself time dependent) appear as the two crucial
ingredients to understand the emergence of effective temperatures in glassy systems. These
features are present in many models of glasses such as mean-field spin-glass models, trap
models (see section 6.4) or entropy barrier models (see section 6.5.1).

4.3. The integrated response function (IRF) and fluctuation–dissipation (FD) plots

When a system is in a non-equilibrium state its response to an external perturbation cannot be
described, in general, by FDT relations such as (60) since this has been derived assuming that
the system is in a stationary state. However, the glassy state is a particular non-equilibrium
state characterized by extremely slow relaxation processes. Hence, while the system is not in
a real equilibrium state, it may be thought of as being in a sort of quasi-equilibrium regime
over timescales much longer than the microscopic timescales but still smaller than the typical
relaxation timescales of the slow processes. In this quasi-equilibrium regime, the evolution of
the system is quasi-stationary since non-stationary effects are seen only for times of the order
of the timescales of the slow processes. In this situation, we may think that relations similar to
(60) can still be valid, even if TTI cannot be assumed anymore. Thus a possible generalization
of FDT to the glassy regime requires us to introduce the following nondimensional quantity,

XA,B(t, s) = T RA,B(t, s)
∂
∂s

CA,B(t, s)
t > s (91)

where XA,B(t, s) is called the fluctuation–dissipation ratio (FDR). In equilibrium XA,B(t, s) =
1 whatever times t, s and observables A,B are used (cf (60)). Thus X is a measure of the
violation of the true equilibrium in the quasi-equilibrium glassy state. The validity of (91), i.e.
the proportionality between the response and the time derivative of the correlation function,
can only be checked a posteriori since it is based on the quasi-equilibrium hypothesis that up
to now it has been proved only in mean-field models. Eliminating one time in favour of the
correlation function, the time dependence of XA,B(t, s) can be recast in the form

XA,B(t, s) ≡ XA,B [CA,B(t, s), s]. (92)

The FDR was first studied in spin glasses where analytical results have shown that glassy
systems in general satisfy the weak ergodicity breaking scenario [40], discussed in section 6.2.
For the present purpose, it is enough to note that calculations in mean-field spin-glass models
[52, 53] have shown that in the limit s → ∞ the FDR is a non-trivial function which depends
on the relation between the times t and s only through the correlation function CA,B(t, s). The
following specific form of FDT violations has been proposed to be generically valid in the
non-equilibrium regime of glassy systems,

lim
s→∞ XA,B(t, s) = XA,B [CA,B(t, s)]. (93)

Using (93) and (91) we obtain the differential form of the quasi-FDT (QFDT) relation [32],

XA,B(C) =
[

T RA,B(t, s)
∂
∂s

CA,B(t, s)

]
CA,B(t,s)=C

t > s (94)

which describes the response of the system in the (quasi)-equilibrium state to a impulsive
perturbation at time s < t . Experiments and numerical simulations usually measure integrated
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response functions8 (IRF), i.e., the response at time t to a perturbation switched on or off at
time s < t . According to definition (43) the variation of the observable 〈A(t)〉ε to linear order
in the perturbation intensity ε is given by

〈A(t)〉εs
= 〈A(t)〉0 + εRA,B(t, s) + O(ε2) t > s. (95)

Assuming that the perturbation acts for all times t > s and that its intensity is small enough
for the accumulated response to be linear in ε we get

〈A(t)〉εs
= 〈A(t)〉0 +

t∑
t ′=s

εt ′RA,B(t, t ′)

= 〈A(t)〉0 +
∫ t

s

dt ′ε(t ′)RA,B(t, t ′) (96)

where εt ′ (or ε(t ′)) is the perturbation at time t ′. In the particular case of ε(t ′) = εθ(t ′ − s),
i.e., of a constant perturbation, one gets

χA,B(t, s) = lim
ε→0

〈A(t)〉εs
− 〈A(t)〉0

ε
=

∫ t

s

dt ′RA,B(t, t ′). (97)

which is also called zero field cooled (ZFC) susceptibility. The name zero field cooled
follows from the experimental protocol used in spin-glass measurements to distinguish it from
the thermoremanent magnetization (TRM). To measure the TRM susceptibility, a constant
external perturbation is applied to the system at time t = 0 and removed at time s > 0 and the
subsequent decay of 〈A(t)〉 is recorded. The TRM susceptibility is given by

χTRM
A,B (t, s) = lim

ε→0

〈A(t)〉εs
− 〈A(t)〉0

ε
=

∫ s

0
dt ′RA,B(t, t ′). (98)

In the large t, s limit the ZFC (97) and TRM (98) susceptibilities are equivalent since they are
related by

χA,B(t, s) + χTRM
A,B (t, s) = χA,B(t, 0) (99)

and χA,B(t → ∞, 0) = χ
eq
A,B .

Inserting the QFDT relation (94) in (97) we obtain the formula

χA,B(t, s) = 1

T

∫ CA,B(t,t)

CA,B(t,s)

dC ′XA,B(C ′) (100)

which relates χA,B(t, s) to the FDR XA,B and provides a simple way to calculate XA,B from
measurements of CA,B(t, s) and χA,B(t, s) in the time sector t > s. Suppose indeed we fix
the lowest time s and plot χA,B(t, s) as function of CA,B(t, s) for different values of t, then
the value of the FDR can be obtained from the slope of the resulting curve. In many of the
examples considered in this review the equal times correlation function is time independent,
for instance CA,B(t, t) = 1. In this case, the slope can be simply obtained by derivation of
χA,B(t, s) with respect to CA,B(t, s) for fixed s which from (100) yields

XA,B(C) = −β
∂χA,B(t, s)

∂CA,B(t, s)

∣∣∣∣
CA,B (t,t)=const,s fixed

. (101)

Typical FD plots are shown in figure 3 for the three possible scenarios (see section 4.1). In the
general case in which CA,B(t, t) is time dependent one needs to be more careful in computing

8 The integrated response functions are also called time-dependent or non-equilibrium susceptibilities.
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the FDR. Sollich and co-workers have proposed [54, 55] to construct FD plots χ versus C
with t kept constant and varying the lowest time s. From (91) we have

XA,B(C) = −β
∂χA,B(t, s)

∂CA,B(t, s)

∣∣∣∣
t fixed

. (102)

If C(t, t) changes with time it is convenient to normalize correlations and the IRF by the equal
times correlation CA,B(t, t):

C̃A,B(t, s) = CA,B(t, s)

CA,B(t, t)
χ̃A,B(t, s) = χA,B(t, s)

CA,B(t, t)
. (103)

With these definitions,

XA,B(C) = −β
∂χ̃A,B(t, s)

∂C̃A,B(t, s)

∣∣∣∣
t fixed

. (104)

The importance of normalizing the raw FD plots (102) is well appreciated in trap models
discussed in section 6.4 or in kinetically constrained models discussed in section 7.5. In this
last case, for example, raw FD plots can lead to awkward representations such as those shown
in figure 36.

4.4. The concept of neutral observables

If the FDR (91), (94) has the physical interpretation of a temperature (as has been suggested,
see the discussion in section 5.2) then one would expect the FDR to be independent of
the observables A,B used to construct correlations and responses. In fact, this is true in
equilibrium where XA,B = 1 whatever A,B. However, although XA,B 
= 1 observable
independence is not at all required in the glassy regime. In this section, we present a brief
digression on which conditions the observables A,B must satisfy for the FDR to be observable
independent. This issue is yet unresolved, so the present discussion is quite speculative.

Albeit restricted, for simplicity we will consider here the case of a glassy system with
only two timescales where A = B (so we will denote XA,A simply by XA) in the time sector
where (t − s)/s ∼ O(1) or XA 
= 1. In equilibrium, one could argue that the equality XA = 1
is related to the fact that the entropy S(E,A), as defined in the microcanonical ensemble
section 2.1, is maximum (12) for A equal to its equilibrium value. This property is observable
independent as well as it is the identity XA = 1. A similar argument, but extended to the glassy
regime, would require us to define the configurational entropy Sc(F,A) (i.e. the equivalent
generalization (2) of (83)) where F,A denote the component averaged values of the free
energy (75) and the corresponding restricted Gibbs average for the observable A. We could
then say that A is a neutral observable if its dynamically averaged value at all times 〈A(t)〉
coincides with the stationary maximum of the function Sc(F,A) as A is varied. Of course, if
this were not true the value of XA would then depend on the value of A in the same way that
the value of the temperature 1/T = β in the microcanonical ensemble, and for a given value
of the energy E, would depend on the value of the observable A if µ in (83) were not zero.

For instance, the magnetization in mean-field spin-glass models is known to be a neutral
observable and nearly all computations of the FDR have used this observable (see section 6.2).
In fact, in the framework of the TAP approach it can be shown that the configurational entropy
evaluated as a function of the free energy and magnetization of the TAP states is maximum at
zero magnetization. Indeed, the fact that the magnetization is not a good order parameter in
these models (it vanishes in both the paramagnetic and the spin-glass phase) is related to its
neutral character. Not by chance do the majority of numerical studies in glassy systems use
the magnetization as the central observable to investigate and measure FDT violations.
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Figure 4. Illustration of the neutrality property of observables. The value of a neutral observable
remains fixed at its initial (equilibrium) value despite the fact that the initial state is non-equilibrium.

A non-neutral observable A would correspond to a situation where, starting at time
zero from a non-equilibrium initial state where the value of A is taken to coincide with its
equilibrium value (this is not a contradiction, since A could coincide with its equilibrium value
but not the value of any other observable) the subsequent evolution of A deviates from its
initial equilibrium value. In this case A is not neutral because its time evolution is correlated
with that of the other observables. In contrast, if A were a neutral observable, then it would
stick to the value A forever (as happens for the magnetization in mean-field spin-glass models).
Figure 4 illustrates this behaviour. The definition of neutrality can be easily adapted in trap
models by assuming that observable values of traps are uncorrelated with their energies [54]
(see also section 6.4).

4.5. Numerical approach to component dynamics: Stillinger–Weber decomposition

The increase of computational power and the recent developments in the theory of disordered
systems has pushed forward an approach to the glass transition based on the analysis of a
reduced dynamics in the component space. The underlying ideas date back more than 30 years
ago to a seminal, but talkative, paper of Goldstein [56]. The glass transition is of purely
dynamical origin and hence must reflect the properties of the dynamical evolution of the
system. Goldstein suggested that the dynamics of a supercooled liquid can be understood in
terms of a diffusive process between different basins of the potential energy surface. At low
temperature the dynamics slows down since the system gets trapped for a long time in a basin.
This approach, which focuses on the topological properties of the energy surface, is rather
appealing since it naturally leads to a convenient framework for understanding the complex
phenomenology of glassy systems.

The implementation of these (qualitative) ideas came some years later by Stillinger and
Weber (SW) [57–59] who formalized the concept of basin in configuration space, identifying
it with a component in the component space, and proposed a procedure for identifying them:
the set of all configurations connected to the same local energy minimum by a steepest descent
path on the energy surface uniquely defines the basins of the minimum. Stillinger and Weber
(SW) called the local minimum inherent structure (IS) to stress its intrinsic nature. Since
the identification of ISs is unique, the mapping from configurations to local minima gives a
unique well-defined decomposition of the phase space into a disjoint set of basins. The SW
decomposition defines a mapping of the phase space to the component space in which each
basin, usually labelled by the energy EIS of the local minimum, is a component.



Topical Review R209

This decomposition does not cover completely the configuration space since it leaves
out the boundaries between different basins. However, under the assumption that those
configurations do not contribute to the thermodynamics of the system, e.g., the boundaries
between basins are subextensive, it does cover almost all the phase space and the partition
function can be written as a sum of contributions from different components:

Z(T ) �
∑
EIS

ZIS(EIS, T ). (105)

Let �(E) denote the number of IS with energy EIS = E, then collecting all components with
the same value of EIS

Z(T ) �
∑
E

�(E)
∑

EIS=E

ZIS(T )/�(E)

=
∑
E

exp[Sc(E) − βFb(T ,E)]. (106)

The term

Sc(E) = log �(E) (107)

which accounts from the entropic contribution arising from the number of different basins
with the same IS energy, is called the SW configurational entropy of complexity. This quantity
is strongly related to the partitioning, so we add the adjective SW to distinguish it from other
definitions of configurational entropy taken from mean-field concepts.

The second term Fb(T ,E) is defined as

Fb(T ,E) = −T log

 1

�(E)

∑
EIS=E

ZIS(T )

 . (108)

In general, this quantity differs from the average free energy of components with EIS = E,
however if all these components have similar statistical properties, then Fb(T ,E) is the free
energy of the system when constrained to any one of the components with EIS = E. In the
thermodynamic limit, the system populates components with energy EIS = EIS(T ) fixed by
the condition

−βF(E) = Sc(E) − βFb(T ,E) = maximum over E (109)

and the free energy of the system can be calculated using

F(T ) = Fb[T ,EIS(T )] − T Sc[EIS(T )]. (110)

The condition (109) is equivalent to that of F(T ) being minimal, i.e.,

∂F

∂E
= ∂Fb(T ,E)

∂E
− T

∂Sc(E)

∂E
= 0. (111)

Note that the minimum condition follows from the balance between the contribution from
the change with the energy of the shape of the basins (∂Fb(T ,E)/∂E) and its corresponding
number (∂Sc(E)/∂E). Often the free energy is written as

Fb(T ,EIS) = EIS + Fv(T ,EIS). (112)

The first term in (112) takes into account the average energy of IS visited in equilibrium at
temperature T, as can be seen from (110): U(T ) = ∂(βFb)/∂β = EIS(T ) + ∂(βFv)/∂β. It
can be shown [60, 61] that if the density of states �(E) is Gaussian and the basins have
approximately the same shape then EIS ∝ 1/T . The second term in (112) describes the
volume of the corresponding components and is called the ‘vibrational’ contribution.
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To understand the success and limitation of the IS approach we have to analyse the idea
behind the SW approach. It is clear that even if the phase space can always be partitioned, not
all possible partitions will lead to a physically relevant dynamics in the component space. This
is a well-known problem in the theory of dynamical systems, where the component dynamics
is called symbolic dynamics, see e.g. [22]. To prove that the SW is a physically good partition
for a given system is a problem of the same hardness as proving ergodicity. One then adopts
a constructive point of view, along the same lines as equilibrium statistical theory: based on
some reasonable hypothesis one first assumes that the SW partition is a good partition and
then checks if this reproduces the desired features of the dynamics.

The physical motivation behind the SW proposal follows from the observation that the
potential energy surface of a supercooled liquid contains a large number of local minima
and that the time evolution can be separated into two different processes: thermal relaxation
into basins (intra-basin motion) and thermally activated potential energy barrier crossing
between different basins (inter-basin motion). This scenario has been recently confirmed
from numerical analysis [60–64]. The timescale separation of the two processes strongly
depends on temperature. When the temperature is lowered down to the order of the critical
mode-coupling theory (MCT) temperature Tc the typical barrier height is of the order of the
thermal energy kBTc, and the slow inter-basin motion dominates the relaxation dynamics. If
the temperature is further reduced the relaxation time eventually becomes of the same order
as the physical observation time and the system falls to a non-equilibrium state since there is
not enough time to cross barriers and equilibrate. With this picture in mind, it is natural to
view the IS partitioning as the natural elements to describe the slow glassy dynamics. This
approach is rather appealing since it naturally leads to universality: all glassy systems with
similar IS dynamics must have similar glassy behaviour. Recent IS analysis performed on
disordered spin systems displaying a transition of fragile glass type does support this conclusion
[36, 65–68]. It should be noted [69] that the definition of IS for spin systems is more subtle
than for systems with continuous variables. Indeed usually for spin systems IS are defined as
one-spin flip stable states, however these may not be stable for two-spin or higher number of
spin flips. One possibility of making IS well defined also for spin systems is to define them
directly from the T = 0 limit of the dynamics, i.e., as states which are stable under the T = 0
dynamics [70]. This is the definition used in this review when discussing IS for spin systems.

5. Thermodynamic description of the aging state

We saw in section 4.2 how the self-generated dynamical measure allows a description of the
aging dynamics in terms of a probabilistic master equation with transition rates characterized
by an extensive quantity that was defined as a configurational entropy or complexity (83). This
quantity has received considerable attention in studies of spin glasses since the seminal paper
of Thouless, Anderson and Palmer (TAP) [71] on the SK model where a way to compute the
configurational entropy was proposed [72]. Later studies in the context of structural glasses
[42–44] have shown its importance as the mechanism for an entropy crisis of the supercooled
liquid as proposed by Kauzmann many years ago [45].

5.1. Methods to compute the complexity

In this section, we present a schematic overview of some of the analytical and numerical
methods that have appeared in the literature to compute the configurational entropy. In the
absence of a full solution of the dynamics in many systems, and under the assumption that
there is a connection between the effective temperature and the configurational entropy (see the
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discussion in section 4.2.1), the calculation of the latter, by using equilibrium methods taken
from statistical physics, appears as an alternative way of quantifying FDT violations. In mean-
field theories metastable states give a natural partition of the phase space since their lifetime
diverges in the thermodynamic limit. For systems with short-range interactions, however,
metastable states can be defined unambiguously only referring to some reference timescale.
Therefore the identification of metastable states for real systems can be a very hard task. In
section 4.5 we have presented a partition scheme, proposed by Stillinger and Weber, which
in principle can be applied to any system. The scheme essentially uses a zero-temperature
dynamics and thus it is free from the ambiguities due to the finite metastable lifetime. The
results described in the next sections must be seen as instructive attempts to evaluate a quantity
(the complexity) that governs the slow dynamics of relaxational glassy systems. The extension
of these equilibrium concepts to other non-equilibrium systems beyond aging systems (e.g.
driven systems) remains an open problem.

5.1.1. Analytical methods. Bray and Moore [72] calculated Sc(F, T ) for the Sherrington–
Kirkpatrick model within the TAP approach. The TAP equations give the local magnetization
mi in a system confined to a metastable state, which for mean-field models have infinite
lifetime. As a consequence, the number of metastable states (i.e. components) can be
readily obtained just by counting the number Ns(F, T ) of solutions of the TAP equations
at temperature T with a free energy F ,

Ns(F, T ) =
∫ 1

−1

N∏
i=1

dmi|det H({mi})|δ(F − F({mi}, T ))δ(gi({mi})) (113)

where F({mi}, T ) is the TAP free energy at temperature T as a function of the local
magnetizations mi , gi({mi}) = ∂F({mi}, T )/∂mi = 0 are the TAP equations and Hij =
∂gi({mi})/∂mj the Hessian. This type of calculation has been done for other mean-field
models, such as p-spin [73] and random orthogonal model (ROM) [74, 75], finding in all
cases that Ns (F, T ) increases exponentially fast with the system size N. This remains true
if the number of free-energy minima Nm(F, T ), instead of the number of stationary points
Ns(F, T ), is considered [76]. Although these types of calculations can be done only in exactly
solvable mean-field models the exponential growth with the system size of the number of free-
energy local minima or stationary points is generally applicable to any system (mean-field or
not) displaying glassy behaviour. Knowledge of the number of minima allows us to define the
complexity (78) as

Sc(F, T ) = log Nm(F, T ) (114)

and hence the thermodynamic potential �(F, T ) = F − T Sc(F, T ) as described in
section 4.2.

A general framework to evaluate the complexity has been devised by Monasson [77]. The
starting point in his procedure is to consider m interacting copies or replicas of the original
system, with an attractive interaction term of the form ε

∑m
a,b=1 Q(Ca, Cb) where Q(Ca, Cb) is

a suitable overlap function which takes its maximum value only if Ca = Cb. The free energy
of the replicated system is then

e−βF(T ,m) =
∑

C1,...,Cm

exp

[
−β

m∑
a=1

H(Ca) + βε

m∑
a,b=1

Q(Ca, Cb)

]
. (115)

If the thermodynamic limit is taken before the limit ε → 0+ then the configurations Ca, Cb tend
to lie as close as possible since maximization of the coupling term minimizes the global free
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energy F (m)(T ) and hence, given a phase space partition, the replicas tend to ‘condense’ into
the same component. Thus collecting all components with the same free energy the partition
function Z(T ,m) can be decomposed as

Z(T ,m) =
∑
F

�(F, T ) exp(−mβF)

=
∑
F

exp[−β�(F, T ,m)] (116)

where �(F, T ,m) = mF − T Sc(F, T ) is basically the potential �(F, T ) discussed in
section 4.2 with the term F multiplied by m (the order of limits, first volume → ∞ and then
ε → 0+, enforces the m replicas to occupy the same component R). In the limit m → 1
we recover the potential �(F, T ): �(F, T ,m = 1) = �(F, T ). Knowledge of �(F, T ,m)

allows us to compute the configurational entropy. In the thermodynamic limit the sum in (116)
is dominated by the free energy F ∗(T ,m) that satisfies the relation

m

T
= ∂Sc(F, T )

∂F

∣∣∣∣
F=F ∗(T ,m)

. (117)

Inserting the solution F ∗(T ,m) into �(F, T ,m) we obtain the free-energy potential
�∗(T ,m) = �(F ∗(T ,m), T ,m). If m (originally an integer value) is continued to real
values then it can be shown that the following relations are satisfied:

∂

∂m
�∗(T ,m) = F ∗(T ,m)

∂

∂m

[
�∗(T ,m)

m

]
= T

m2
Sc(F

∗, T ). (118)

Varying m allows us to compute the configurational entropy Sc(F, T ) as a function of the
two variables F and T. The potential �(F, T ,m) can be explicitly evaluated with the sole
knowledge of the microscopic Hamiltonian of the system and using the replica method.
Although this procedure was initially applied only to mean-field disordered systems [77, 78],
more recently it has been extended to more realistic interacting potentials such as Lennard-
Jones liquids [79, 80] and binary mixtures [81, 82].

This method of computing the configurational entropy can be easily implemented in the
framework of the standard replica method for mean-field disordered systems. This has been
worked in some detail in [83, 84]. The starting point is free energy at the one-step level of
replica symmetry breaking F(q0, q1,m), where q0, q1 and m are the parameters that describe
the Parisi matrix [35] in the one-step replica symmetry breaking scheme. By expanding the free
energy around m = 1 one gets, F(q0, q1,m) = FRS(q0) + F (1)(q0, q1)(m − 1) + O((m − 1)2)

where q0 stands for the overlap among replicas belonging to different subboxes and FRS(q0) is
the free energy in the replica symmetric approximation, i.e., in the limit m → 1. Extremization
of FRS(q0) yields q0(β) which inserted into F(q0, q1,m) allows us to find FRS(β), F (1)(β, q1).
Knowledge of these functions fully determines the configurational entropy of the system
for temperature TRSB < T < Tc (where Tc corresponds to the MCT, see section 6.1).
Indeed the dynamical transition Tc is found solving the equations (∂/∂q1)F

(1)(β, q1) =(
∂2
/
∂q2

1

)
F (1)(β, q1) = 0 while the static transition TRSB, where the configurational entropy

vanishes, follows from the solution of F (1)(β, q1) = (∂/∂q1)F
(1)(β, q1) = 0. Finally, the

complexity in the region TRSB < T < Tc is given by the value of F (1)(β, q1) evaluated
for q1(β) solution of the equation (∂/∂q1)F

(1)(β, q1) = 0. This approach gives a detailed
description of the metastable properties in the range TRSB < T < Tc. Below TRSB more
sophisticated methods are needed to describe the metastable behaviour.

The potential method has been proposed by Franz and Parisi [85] in the framework of the
replica approach. The starting point in this procedure is to write down the partition function of
a generic system at temperature T whose configurations C are constrained to have an overlap
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Figure 5. Stillinger and Weber decomposition.

Q(C, C0) with a reference configuration C0. The free energy of the constrained system is
then averaged, using the replica method, over the reference configuration C0 thermalized at a
temperature T ′ in general different from T. This yields the potential V (Q, T , T ′). For T = T ′,
and in a given range of temperatures, the potential V , as a function of Q, has two local minima.
The difference of the potential at these two values yields the configurational entropy at that
temperature. The method has been applied to evaluate the configurational entropy in the
hypernetted chain approximation usually employed for liquids [86, 87].

5.1.2. Numerical methods. Among numerical approaches, Speedy [88] has proposed a
method that consists in estimating what he defines as the statistical entropy (basically identical
to the intrastate entropy in the inherent structure approach discussed in section 4.5) and
comparing it to the thermal or total entropy obtained from integration of the specific heat.
The difference between the thermal entropy and the statistical entropy is the complexity.
To compute the statistical entropy, the method considers different reference configurations
representative of an amorphous glass state and introduces a coupling term between a reference
configuration and the system that forces it to stay within a given distance of that reference
configuration. By progressively slowly changing the intensity of the coupling the energy of
the system can be evaluated for each value of the coupling. The entropy associated with
a particular reference state is then estimated by integrating the energy as a function of the
intensity of the coupling. Speedy has applied this approach [88–90] to hard-sphere systems
where the centre of the hard spheres is tethered to a spherical region with a variable diameter
that regulates the intensity of the coupling.

Probably up to now the most powerful method to compute numerically the configuration
entropy is that based on the IS formalism. Moreover, due to its relatively simple
implementation, the IS formalism has become an important tool in the numerical analysis
of models. For this reason we shall give a more detailed presentation. The calculation
of IS, summarized in figure 5, follows directly from the definition. First the system is
equilibrated at a given temperature T, then starting from an equilibrium configuration the
system is instantaneously quenched down to T = 0 by decreasing the energy along the
steepest descent path. The procedure is repeated several times starting from uncorrelated
equilibrium configurations. In this way the ISs are identified and their probability distribution
can be computed. In equilibrium at temperature T the system explores the IS of energy
EIS = E with probability (see (106), (112))

P(E, T ) = exp[Sc(E) − βE − βFv(T ,E) + βF(T )] (119)
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where F(T ) is the equilibrium free energy. Then the SW configurational entropy can be
computed just inverting this relation,

Sc(E) = lnP(E, T ) + βE + βFv(T ,E) − βF(T ) (120)

and using the computed IS probability distribution. If the energy dependence of Fv(T ,E) can
be neglected, then curves for different temperatures can be superimposed and the resulting
curve is, except for an unknown constant, the SW complexity Sc(E). The unknown constant
can be fixed by either comparing the numerical results with known theoretical predictions,
or using the method described below. This method works rather well for some disordered
spin systems such as the random orthogonal model (ROM), where the data collapse is rather
good for a quite large energy interval [65]. The vibrational contribution Fv follows from the
motion inside the component. Its independence of the energy of IS means that all components
are equivalent, i.e., have similar shapes. In general, this is not the case and its contribution
must be included. For systems with continuous variables Fv can be calculated at low T in the
harmonic approximation by expanding the energy about the IS configuration [91, 92].

An alternative numerical method consists in computing directly the configurational
entropy as a function of temperature. This method is free from unknown constants but
does not resolve the configurational entropy as a function of IS energy. Considering (110) and
(112) we have

F(T ) = E(T ) − T S(T )

= EIS(T ) + Ev(T ) − T Sc(T ) − T Sv(T ) (121)

where EIS(T ) is the average energy of IS seen at equilibrium at temperature T. The total
entropy is then the sum of two contributions,

S(T ) = Sc(T ) + Sv(T ). (122)

The first term accounts for the multiplicity of components of energy EIS(T ) while the second
for their ‘volume’. The SW configurational entropy can then be computed as a difference
between the total and the vibrational entropy.

The total entropy S can be evaluated via thermodynamic integration of the total energy at
temperature T from a known reference point:

�S = S(T ) − S(T ∗) =
∫ T

T ∗

dE

T
. (123)

Computing the vibrational contribution is more difficult, however at low temperature the
system mainly explores the bottom of the components, near the IS. If the system is described
by continuous variables then the vibrational contribution can be computed in the harmonic
approximation by expanding about the IS. This leads to

Sv(T ) � Sharm(T ) = N −
N∑

i=1

log

[
h̄ωi(T )

kBT

]
(124)

where ωi is the (average) frequency of the ith normal mode and N the number of normal
modes. It is possible to refine this approximation by adding terms which take into account
the basin anharmonicities, however usually these are negligible when compared with (124)
[92]. For systems with discrete variables, such as for example disordered Ising-spin systems,
the vibrational contribution can be estimated from the T → 0 expansion of the TAP entropy,
which leads to

Sv(T ) �
N∑

i=1

2β|hi|exp(−2β|hi|) (125)
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where N is the number of spins, and hi is the local field acting on ith spin evaluated at the IS
configuration [93].

These methods have been successfully applied to several model systems with both
continuous variables such as Lennard-Jones glasses [91, 92, 94] or discrete variables like
the ROM [65] or the SK model [65, 95].

Recently in [96] there has been introduced a numerical method to compute directly
Sc(F, T ) within the IS decomposition scheme based on the probabilistic definition of the
component free energy. The dynamical evolution of the system in equilibrium defines a
probability measure pR over the components. In the case of an ergodic dynamics, and
assuming that the observation time τobs is larger than the equilibration time, the statistical
weight of the component R is

pR(T ) = τR

τobs
= exp[−βF(R) + βF(T )] (126)

where τR denote the time spent by system in the component R during the total observation
time τobs, F (T ) the equilibrium free energy and F(R) the component free energy (see (75)).
The probability to find at temperature T a component with free energy equal to F is

P(F, T ) =
∑
R

pR(T )δ (F − F(R))

= exp[Sc(F, T ) − βF + βF(T )] (127)

so that

Sc(F, T ) = lnP(F, T ) + β[F − F(T )]. (128)

If the number of different components is not too large F(R) can be estimated directly using
(126) and the frequency with which a given component R appears in a (long) simulation at
temperature T:

F(R) = −T ln

(
τR

τobs

)
+ F(T ). (129)

The equilibrium free energy F(T ) can be computed by performing simulations at different
temperatures and integrating the energy E(T ) of the system from T = ∞ down to T,

βF(T ) =
∫ β

0
dβ ′ Eeq(β

′) − S(β = 0) (130)

where S(β = 0) is the infinite-temperature entropy of the system. From the value of F(R) it
is now easy to construct the histogram P(F, T ) and using (128) compute Sc(F, T ). Because
the system is equilibrated, in this approach components with identical free energy are sampled
with the same probability. This differs from the previous method where components with the
same energy EIS are assumed to be equally probable which is clearly an approximation. The
two methods coincide only if components have similar volumes so that the component entropy
is the same.

This method has been successfully applied in [96] to the study of the ROM and the SK
model, two cases with completely different critical behaviour. In both cases, the computed
potential � allows for a very precise calculation of critical temperatures using relatively
small systems giving confidence on Sc(F, T ). Moreover, the form of � clearly discriminates
between the two different types of transitions.
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5.2. The concept of the effective temperature

There is the long standing idea that the non-equilibrium regime in aging or driven systems
can be characterized by the FDR XA,B(C) (94) that has the meaning of a temperature in the
thermodynamic sense. This suggestion stems from the observation that (94) can be recast in
the following form,

1

T
(A,B)

eff (C)
= XA,B(C)

T
= RA,B(t, s)

∂
∂s

CA,B(t, s)

∣∣∣∣∣
CA,B (t,s)=C

t > s (131)

defining an effective temperature through the relation

T
(A,B)

eff (C) = T

XA,B(C)
. (132)

As defined in (131), (132) the effective temperature is nothing other than a suitable parameter
which tells that the QFDT becomes the usual FDT by replacing the bath temperature with
the effective temperature. In many cases XA,B(C) < 1 so the effective temperature T

(A,B)

eff is
larger than the bath temperature.

The idea that some concepts of thermodynamic systems can be applied also to non-
equilibrium systems has been wandering around in the literature for a long time (in the context
of turbulence see [97] or in the context of structural glasses [2, 98, 99]). The statement that
the effective temperature (132) has indeed a thermodynamic meaning faces some conceptual
problems and difficulties not found in equilibrium theory. T

(A,B)

eff should satisfy the following
properties:

• Observable independence. T
(A,B)

eff (C) must be independent of the observables A,B used
to construct correlations and responses. If this is not always possible, as the present
numerical evidence suggests, at least one would still like to know beforehand which
set of ‘good’ observables endows (132) with a physical meaning. These observables
have received the name of neutral observables and have been discussed in section 4.4.
From many perspectives, this condition appears quite strong. It could be relaxed by only
requiring independence of Teff from the measured observable A for a given perturbation
B (rather than on both A,B).

• Zeroth law. If the slow degrees of freedom of a system described by effective temperature
Teff(C) (we have dropped the A,B dependence) are put in contact with a thermal bath at
temperature T, the net heat flow between the system and the bath should vanish only if
Teff(C) = T , where C determines the relevant timescale (as described in section 4.1) at
which the thermal bath,acting as a thermometer, responds. The same conclusion must hold
between two glassy systems described by two effective temperatures T

(1)

eff (C), T
(2)

eff (C).
After putting them in contact the net heat current between them, at the relevant timescale
defined by the correlation C, vanishes only if T

(1)
eff (C) = T

(2)
eff (C). This definition,

apparently reasonable, encounters some difficulties that we will describe below. In
particular, systems with identical effective temperatures T

(1)
eff (C) = T

(2)
eff (C ′) but at

different timescales (C 
= C′) cannot be in mutual equilibrium.
• Existence of a non-equilibrium measure. The zeroth law carries an associated maximum

principle. In standard thermodynamics the zeroth law establishes that after putting in
contact two systems at different temperatures the global system reaches a stationary
state with a unique temperature. This stationary state is the one that maximizes the
global entropy of the compound system compatible with a given total energy. Moreover,
fluctuations around this maximum entropy state are ruled by the temperature. By the
same token, the aging state of relaxational systems and the stationary state of driven
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systems must exhibit some fluctuations or deviations around the aging (or driven) state
that are described by the effective temperature T eff(C). The full characterization of these
fluctuations is presently unknown.

In section 4.2 we tried to fortify the idea that a thermodynamic description is indeed
possible and that the effective temperature shares some properties of thermodynamic
temperatures. Cugliandolo et al [100] have emphasized these aspects showing that the effective
temperature can be defined only regarding the timescale under consideration. They considered
a small thermometer that can be mimicked by a single harmonic oscillator of frequency ω that
is put in contact with the original system. For definitiveness let us consider that x denotes the
oscillator coordinate and O(y) an observable of the system (described by the variable y) to
which the oscillator is coupled by an interaction term, −εxO(y) where ε is the intensity of the
coupling. If ε is small enough, then the interaction between the oscillator and the system can
be treated within the linear response theory and the energy of the oscillator evaluated in the
stationary state. The equipartition theorem relates this energy to the temperature measured by
the oscillator acting as a thermometer. In aging systems, the effective temperature is given by
the FDT in the frequency domain (also called Nyquist formula),

T
(O)

eff (ω, tw) = π

2

ωSO(ω, tw)

χ ′′
O(ω, tw)

(133)

where SO(ω, tw) is the power spectrum of correlation 〈O(t)O(tw)〉 expressed in Fourier space
(see (275)) and χ ′′

O(ω, tw) the corresponding out-of-phase susceptibility. A similar expression
is valid for the stationary non-equilibrium state of driven systems, however because TTI holds
the tw dependence in (133) drops off. The connection between (132) and (133) appears when
translating the meaning of ω and tw into the many-timescales scenario. According to that
ω corresponds to 1/(t − tw) and therefore we can define C∗ ≡ C(t, tw) = C(tw + 1/ω, tw).
This means that a thermometer put in contact with the system at time tw and responding
at a given frequency ω measures the temperature Teff(C

∗) = T/X(C∗). Equivalently, to
measure the temperature Teff(C

∗) = T/X(C∗) in an aging system a thermometer responding to
a timescale t∗ = 1/ω with C∗ ≡ C(tw + 1/ω, tw) should be used. In aging systems with two-
timescales (such as structural glasses) characterized by the full aging t/tw, in order to measure
the effective temperature associated with the slow process, the frequency of the thermometer
must be ω ∼ 1/tw. The thermometer must respond in a timescale of the order of the waiting
time!! In this scenario, effective temperatures can be extremely difficult to measure and this
raises the question of their true meaning as the system drifts away from that state in the time
required for a single measurement. To cope with this problem it has been proposed [101]
that an ensemble of small thermometers is needed for the measurement. However, this does
not solve the problem of how to measure, using this procedure, the effective temperature of
a vitrified piece of glass quenched 1000 years ago. These difficulties are inherent to aging
systems but not necessarily in driven systems that reach a stationary TTI state. For these
reasons, experimental measurements of FDT violations and effective temperatures could be
more suitable in driven rather than aging systems (for concerning experiments see discussion
in section 8).

Zeroth law aspects of the effective temperature have been considered in [100, 102] within
the spherical p-spin model. It has been shown that in the large tw → ∞ limit and low
frequency limit ω → 0 there are only two possible ansatz solutions that close the dynamical
equations in the aging state: either the two systems remain uncoupled with different effective
temperatures or they thermalize and reach a common temperature. These results have been
endorsed by a systematic study of these coupled solutions in the framework of the oscillator
(OSC) model [103]. The OSC model is characterized by a single timescale corresponding
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Figure 6. Left panel: relative difference between the measured temperature by a thermometer
responding in a timescale τ = 1/ω and the glassy OSC model aged at t, plotted against t/τ

for different values of τ = 104, 105, 106, 107, 108, 109, 1010, 1011 (from bottom to top). The
measured temperature coincides with Teff for t/τ ∼ O(1). In the inset, the same relative difference
but plotted against t for τ = 103, 104. Right panel: measured temperature plotted as a function of
t/τ . From [105].

to the slow process at zero temperature (see section 6.5.1). It has been shown that, in the
presence of an interaction term in the Hamiltonian that describes a compound system formed
by two ensembles of the OSC model, the dynamics behaves in two different ways: either the
effective temperatures equalize or they are different as if the systems were uncoupled. The
dynamics remains always uncoupled (independent of the coupling intensity) if the dynamics
is sequential on both systems, i.e., the updating is done sequentially over the two ensembles
1 → 2 → 1 → 2 and so on. In this case the effective temperatures of the two systems differ,
each one corresponding to that of the non-interacting OSC ensemble. If dynamics is parallel,
i.e., updating is done simultaneously over the two OSC ensembles 1 + 2 → 1 + 2 → 1 + 2
and so on, then the effective temperatures of both models coincide even for a zero value of
the coupling ε in the Hamiltonian. This result shows that, in general, two glassy systems
interacting through a coupling term in the Hamiltonian do not necessarily reach the same
effective temperature on timescales of the order of the waiting time.

In all these studies the same question remains always unanswered: why do fast and slow
degrees of freedom decouple into different effective temperatures (in two-timescale systems,
one is the bath temperature, the other the (higher) effective temperature)? A necessary
condition is that the relaxation rate of the energy (or entropy production) decays to zero slowly
enough [104]. To better understand this question, in [105] the thermal current between the
oscillator model and a thermometer was analysed (see figure 6). There it was shown that
the measured temperature Tm, which makes the net current flow between system and the
thermometer vanish, coincides with the effective temperature if ωt ∼ 1. However, in the
limit ωt � 1 the measured temperature is much smaller than the effective temperature,
while in the other extreme ωt � 1 the thermometer measures tolerably well the effective
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temperature. Discrepancies between the measured and the effective temperature have also
been reported in the SK model in the presence of asymmetric interactions as an example of
a driven system [106]. Another important aspect is that the zeroth law is hardly effective as
transport coefficients (such as the thermal conductivity) are exceedingly small, in agreement
with the uncoupling of degrees of freedom occurring in glassy systems with many timescales.
From another point of view Nieuwenhuizen [49, 107, 108] has formulated a theory to
describe the aging regime of glassy systems with two timescales assuming, right from the
beginning, that the effective temperature is indeed associated with a thermodynamic potential.
In this formulation, the configurational entropy is an extensive thermodynamic potential
conjugated to the effective temperature. The first law of thermodynamics, that expresses
energy conservation, reads dE = dW +T dSeq +Teff dSc where S = Seq +Sc is the total entropy
that receives contributions from the equilibrium (or intrastate) entropy and the configurational
entropy. The configurational entropy and the effective temperature manifest in the reported
experimental failure of the second Ehrenfest relation (while the first is automatically satisfied
by construction) leading to values of the Prigogine–Defay ratio larger than 1 [109].

5.3. The Edwards measure for granular materials

Granular materials are systems made of a large number of individual grains such as sands or
powders. At first sight granular systems look quite different from thermodynamical systems
since, for example, they interact mainly through frictional forces and hence the energy is
not conserved. Moreover, power is supplied to them by tapping, shearing or shaking, all
mechanisms quite different from thermal contact with a thermal bath. However, despite these
differences, granular materials share with thermal systems the property that their properties
are reproducible given the same set of extensive operations, i.e., operations acting upon the
system as a whole and not on individual grains. For example, if some sand is poured uniformly
and at low density into a container one expects to have a sand of a certain reproducible density.
Based on these facts it is then reasonable to hypothesize that granular systems can be described
at a macroscopic level by a small number of parameters, analogous, e.g., to temperature or
pressure, using some ideas of statistical mechanics [110–114].

The most important variable describing the state of a granular system is its density, or
equivalently its volume V . The thermal energy of a granular system at room temperature is
indeed negligible. The volume V is the actual volume occupied by the system, for example
measured by the position of a piston in the container, and hence it depends on the configurations
(position and orientation) of the grains. In principle other variables should be necessary to
describe the state of the system, but if we assume that the grains are rigid then all other
microscopic details can be neglected. Thus the only valid configurations of grains are stable
arrangements where grains can remain at rest under the influence of confining forces, and
with no overlap among them. We are then led to a statistical description of all possible stable
configurations of grains in the real space, i.e., to a configurational statistical mechanical theory
for the random packing of grains. Since in a stable configuration grains that cannot move
these configurations are also called blocked states.

The next step to develop a statistical mechanical description for granular systems consists
in the introduction of a volume function W [110, 111] which plays the role of energy in
statistical mechanics. The function W specifies the volume of the system in terms of the
configuration of grains: V = W(q), where q denotes all the grain positions and orientations
in a blocked state. Under the assumption that for a given volume V all configurations for
which V = W(q) are equally probable a statistical description can be developed through a
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process completely analogous to that of conventional statistical mechanics. It is then possible
to introduce a microcanonical ensemble with distribution function

e−Sδ(V − W(q)) (134)

where S = S(V ) is the entropy defined as usual in terms of the total number of blocked states

� =
∫

dq δ(V − W(q)) S = ln �. (135)

Similar to its thermodynamic counterpart, the entropy S is an extensive quantity as can be
seen, for example, in simple toy models [111, 115]. The measure (134), (135) is usually called
Edwards’ measure for granular systems.

To define a canonical ensemble it is necessary to define a parameter analogous to
temperature which characterizes the state of the system. This parameter is the compactivity X

defined as
1

X
= ∂S

∂V
(136)

and thus the partition function is

Z = e−Y(X)/X =
∫

dq e−W(q)/X (137)

where potential Y (X) is called the effective volume and plays the role of a free energy:

Y (X) = V (X) − XS. (138)

The analogy can be pushed forward and many other relations similar to that of conventional
statistical mechanics can be derived. We shall not pursue this here, however, before concluding
we shall spend some more words on the compactivity X. The compactivity X measures the
packing of grains, indeed from its definition it is clear that it may be interpreted as being
characteristic of the number of possible ways of arranging the grains of a system by changing
the volume by an amount �V , the change in entropy being equal to �S. Consequently,
the two limits of X are 0 and ∞ corresponding to the most compact and the least compact
arrangements, respectively. The compactivity X also describes the balance between the
tendency of the system to increase or decrease its volume and the tendency to increase or
reduce its entropy.

At first sight blocked states in granular systems resemble IS discussed for glasses. Indeed
a connection between the two can be drawn [41, 116–118] introducing a ‘tapping’ dynamics
for glasses, i.e., a dynamics in which each tap consists in raising the temperature and, after
a short time, quenching it to zero. Similar to what has been done for other glassy systems,
one can try to describe the dynamics of the slow degrees of freedom through an effective
temperature defined from the FDR [100, 119]. At the mean-field level this temperature turns
out to coincide with the Edwards compactivity, which is related to the derivative of the entropy
of blocked configurations of a given density. The Edwards ensemble immediately leads to the
definition of an entropy SEdw(ρ) as the logarithm of the number of blocked configurations of
given ρ. The soundness of the Edwards approach encounters difficulties reminiscent of those
present in the IS approach. At present the correspondence between the Edwards construction
and the long-time slow dynamics for non-mean-field models can only be checked a posteriori
and it is presently unknown how to derive it from first principles.

6. QFDT from exactly solvable models

In the structural glass problem, the spatial randomness is self-generated rather than put in
by hand as in random spin-glass models. This suggests that there should be a connection
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also with frustrated but regular models. In the last years several spin models, both with and
without randomness, displaying structural-glass transition like properties have been found.
Interestingly, some of them can be solved in closed form, offering an important tool for
understanding the glass transition.

In this section, we shall summarize the main results on violation of FDT obtained from
the exact solution of some spin models.

6.1. The mode-coupling theory

A model Hamiltonian or an effective Lagrangian capable of describing relaxation processes
in supercooled liquids and structural glasses is difficult to obtain. Early studies based on both
dynamical mode-coupling theories or equilibrium density-functional theories suggested that
there may be a close connection with mean-field spin-glass models [120]. They thus provide
a set of microscopical models where glassy dynamics can be studied analytically. The basic
simplification occurring in mean-field models is that after averaging over the disorder and
making the number of spins very large (N → ∞) one is left with a closed set of equations
for the two-times correlation and response functions. Above a critical temperature Tc those
equations admit a TTI solution satisfying the FDT. In this regime they are basically equivalent
to the schematic mode-coupling equations introduced by Leutheusser, Götze and others
[121–123] as a model for the ideal glass transition. Below Tc the ergodicity is broken
and the FDT is violated. This is signalled by the appearance of a finite Edwards–Anderson
order parameter qEA at Tc.

The fundamental quantities in the dynamical mode-coupling theory (MCT) are the local
particle density correlation functions 〈δρ(x, t)δρ(x)〉 where δρ(x) = ρ(x) − ρ0, with

ρ(x) =
N∑

i=1

δ(x − xi) (139)

the local particle density, and ρ0 the uniform fluid density

〈ρ(x)〉 = ρ0 (homogeneous state) (140)

where the angle brackets denote an ensemble average. In the glassy phase, the system is
trapped into metastable states with nonuniform (average) local density field 〈ρ(x)〉 
= ρ0 and
the density-fluctuation correlation functions do not decay to zero for t → ∞:

lim
t→∞〈δρ(x, t)δρ(x)〉 
= 0. (141)

The complete mode-coupling theories lead to the time-evolution equations for the normalized
correlation functions

φq(t) = 〈δρ(q, t)∗δρ(q, 0)〉
NSq

(142)

where Sq = 〈|δρ(q)|2〉/N is the static structure factor, and ρ(q) are the Fourier components
of the density field ρ(x),

ρ(q) =
∫

exp(−iq · x)ρ(x) dx =
N∑

i=1

exp(−iq · xi). (143)

The basic idea of MCT is to derive the equations of motion for the slow relaxing modes
integrating all fast modes. This leads to a set of self-consistent equations involving only slow
mode variables in which all information from fast modes are buried into density-fluctuation
memory kernels of the form

Mq(t) = iνq + �2
qmq(t) (144)
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where νq is a (white-noise) frictional term arising from fast modes, �q > 0 gives the frequency
or timescale of microscopic motion and mq(t) accounts for slow modes couplings arising from
the integration of the fast modes. The general form of the MCT equations is [123]

∂2
t φq(t) + νq∂tφq(t) + �2

qφq(t) + �2
q

∫ t

0
ds mq(t − s)∂sφq(s) = 0 (145)

which must be solved with initial conditions:

φq(t = 0) = 1 ∂tφq(t = 0) = 0. (146)

The fundamental mechanism for the glass transition in the MCT is the feedback between slow
density fluctuations expressed through mq(t). The solution of these equations is a formidable
task since the kernel mq(t) involves higher order correlations between density-fluctuation
modes. Therefore when these theories are implemented approximations are generally made.
The simplest approximation consists of replacing the average of products with products of
averages to obtain a set of closed equations. This is some sort of mean-field approximation.
Indeed within this scheme the memory-kernel mq(t) can be expressed as a functional of
the φq ,

mq(t) = Fq [V, {φq}] (147)

with some vertex functions V. Despite this rather strong approximation, similar to a mean-
field approach, the theory contains the basic mechanism of the glass transition. We note that
due to this approximation, the MCT is not capable of describing activated processes, in the
same way they cannot be discussed within mean-field theories. Therefore the appearance of
activated-process dominated regimes is signalled in this theory by the divergence of some
quantities. Activated processes could, in principle, be included as perturbative terms, however
consistent theories which account for them are not yet available.

The main properties of the MCT can best be seen using a simplified version of the theory
called schematic mode-coupling theory in which only one relaxation function is considered
[121–123]:

∂2
t φ(t) + ν∂tφ(t) + �2φ(t) + �2

∫ t

0
ds m(t − s)∂sφ(s) = 0. (148)

The simplest model describing an idealized structural-glass transition is that specified by the
two coupling constants (v1, v2):

m(t) = v1φ(t) + v2φ(t)2. (149)

This theory predicts a transition from an ergodic liquid phase, where φ(t → ∞) → 0, to
a glass phase, where the ergodicity is broken and φ(t → ∞) → f > 0, as the parameter
(v1, v2) are varied. Depending on the values of (v1, v2) the nature of the transition can be
either continuous (type A) with f growing continuously from zero or discontinuous (type B)
with f jumping from zero to a finite value as the transition line is crossed.

6.2. Disordered spin-glass models

Mean-field spin-glass models can be classified into two broad classes depending on the value of
the Edwards–Anderson parameter (qEA) at the transition (for the structural-glass transition this
can be identified with the long-time limit of the density correlation functions). The first class,
called discontinuous models, includes models for which a finite qEA appears discontinuously
at Tc. The prototype model in this class, which we discuss here, is the spherical p-spin model.
Other models included in this family are: Potts glasses with more than four components
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[42, 124], quadrupolar glass models [124, 125] and p-spin interaction spin-glass models
[43, 44, 126–128]. The second class includes models such as the Sherrington–Kirkpatrick
(SK) model [129, 130], for which qEA starts continuously from 0 at Tc. Those models are
termed continuous models.

6.2.1. p-spin spherical model. Among the mean-field spin-glass models with a discontinuous
spin-glass transition an important role has been played by the spherical p-spin spin-glass model.
Spin-glass models with multispin interactions were first considered in the 1980s for both Ising
[126–128] as well as soft spins [43, 44]. However, while the static properties could be
computed for arbitrary values of p, dynamical properties were limited to values of p close
to 2 [43, 44]. An important step forward came with the introduction of the spherical p-spin
spin-glass model [131, 132], since its statics and dynamics can be solved in closed form for
any value of p.

The spherical p-spin interaction spin-glass model is defined by the Hamiltonian

H = −
∑

1�i1<···<ip�N

Ji1...ipσi1 · · · σip − h

N∑
i=1

σi (150)

where h is an external field, which in the following we shall take equal to zero for simplicity. It
describes a system of N continuous spins σi interacting via randomly quenched infinite range
p-spin interactions Ji1...ip which are taken to be Gaussian with zero mean and variance(

Ji1,...,ip

)2 = J 2p!

2Np−1
1 � i1 < · · · < ip � N. (151)

The overbar stands for the average over the couplings. The scaling with N is chosen such that
there is a well-defined thermodynamic limit N → ∞. The spins can vary continuously from
−∞ to +∞, but are subject to the global spherical constraint

N∑
i=1

σ 2
i = N (152)

which must be satisfied at any time. The relaxational dynamics for σi(t) is given by the set of
Langevin equations [133]

�−1
0 ∂tσi(t) = −r(t)σi(t) − δβH

δσi(t)
+ ηi(t). (153)

The kinetic coefficient �0 sets the timescale of the microscopic dynamics, and will be
henceforth set to 1 without loss of generality, while β = 1/T . The last term in (153) ηi(t) is
a Gaussian random field with zero mean and variance

〈ηi(t)ηj (t
′)〉 = 2�−1

0 δij δ(t − t ′) (154)

representing the effects of thermal noise. The average over thermal noise is denoted as usual
by angle brackets 〈· · ·〉. The first term in (153) enforces the spherical constraint at any time,
and must be fixed self-consistently. In the mean-field limit N → ∞ the sample-averaged
dynamics is entirely described by the evolution of the two-times correlation and linear response
functions

C(t, s) = 〈σi(t)σi (s)〉 (155)

R(t, s) = δ〈σi(t)〉
δhi(s)

∣∣∣∣∣
hi=0

(156)
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which vanishes for t < s due to causality. The dynamical equations for C and R are obtained
from (153) [132] through standard functional methods [43, 44, 134]. At high temperatures
the system is ergodic, thus for initial time ti → −∞ both TTI and FDT hold. Using the FDT
relation the equation for C(t − s) reads [132]

∂τC(τ) + C(τ) +
∫ τ

0
dτ ′m(τ − τ ′)∂τ ′C(τ ′) = 0 (157)

where τ = t − s and

m(τ) = µC(τ)p−1 (158)

which has the same structure of the schematic MCT equation (148). The correlation always
decays to zero for large t. However, slightly above Tc there develops a plateau at C ∼ qEA

before eventually decaying to zero, see figure 7. The length τp(T ) of the plateau increases as
a power of T − Tc and diverges at Tc. Near the plateau one finds that

C(τ) ∼ qEA + caτ
−a C � qEA (159)

C(τ) ∼ qEA − cbτ
b C � qEA (160)

where the exponents a and b are related by

�2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
= (p − 2)(1 − qEA)

2qEA
. (161)

The plateau length scale τp(T ) sets the equilibration timescale. Therefore, as the temperature
is lowered to Tc the system undergoes a transition since the length of the plateau diverges and
the correlation fails to decay to zero. In the low-temperature spin-glass phase (T < Tc) the
system cannot equilibrate and the ergodicity is broken so the state of the system may depend
on its initial state. In this scenario, it is clear that even a mean-field theory can be highly
non-trivial. To discuss the dynamics in the low-temperature phase it is convenient to have an
understanding of the low-temperature structure of the phase space. A standard method to deal
with such a problem is the so-called replica trick, see e.g. [35]. The breaking of ergodicity
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results in a breaking of the permutation symmetry between replicas [135]. The general form
of the breaking is, however, not known. For p-spin models it has been found that the solution
is given by the so-called one-step replica symmetry breaking (1RSB) form [44, 127, 128,
131]. Physically this means that the phase space is broken into equivalent ergodic components
separated by infinite (for N → ∞) barriers and the equilibrium solution is described by only
three parameters: the overlap between two different ergodic components, the overlap inside
an ergodic component (the Edwards–Anderson order parameter) and the probability that two
different replicas will be found in the same ergodic component. For the p-spin spherical
model this solution is valid everywhere in the low-temperature phase [131]. Ising-spin p-spin
models present an even lower temperature phase with a more complex structure described by
an infinite-step replica symmetry breaking (∞-RSB) [128]. A similar scenario is also found
in Potts glasses with more than four components [124].

Besides the replica approach,which gives essentially information on the lowest lying states
which mostly contribute to the equilibrium measure, a good understanding of the landscape
topology is given by the TAP approach. Using these methods we have now a rather good
knowledge of the landscape [73, 85, 136–140]. Roughly speaking the picture that emerges for
the p-spin spherical model is that equilibrium states, whose energy and free energy difference
is O(1), are separated by O(N) barriers. As the temperature is changed the solutions neither
merge nor bifurcate, and their free energy smoothly changes. The TAP equations for the
p-spin spherical model have non-trivial solutions in the free-energy range (F1RSB, Fthr), where
the threshold free energy Fthr is larger that the equilibrium free energy F1RSB by an O(N)

quantity, the difference being the complexity, see section 5.1, which is maximal for F = Fthr

and vanishes when F = F1RSB. Below the threshold the equilibrium states are local minima
of the TAP free energy separated by O(N) barriers, while above the threshold there are no
minima.

To have a meaningful investigation of the non-ergodic phase some regularization scheme
of the dynamics on a very long timescale is required. One possibility is to refer to a large
finite system. The finiteness of N guarantees ergodicity by allowing the penetration of barriers
whose height would diverge for N → ∞ limit, and the system can equilibrate. This approach
was first proposed by Sompolinsky for the Sherrington–Kirkpatrick model [141]. In the
Sompolinsky scheme TTI holds and FDT is satisfied up to some timescale t0, which diverges
as N → ∞, related to the (free-)energy barrier crossing, but it is violated for timescales larger
than t0 where it is replaced by a modified form called quasi-fluctuation–dissipation theorem
(QFDT). See section 6.2.2 for a more detailed discussion of the Sompolinsky scheme. In
order to consider the motion on the two different time regimes (t � t0 and t � t0) one writes
[32, 132]

C(τ) = C1(τ ) + C0(ξ) R(τ) = R1(τ ) +
1

t0
R0(ξ) (162)

where ξ = τ/t0. The functions C1(τ ) and R1(τ ) describe the motion in a single ergodic
component and vary on timescales �t0, while the functions C0(ξ) and R0(ξ) describe the
motion among different minima and hence vary on timescales �t0. Continuity imposes

C1(τ = 0) = 1 − qEA C1(τ → ∞) = 0 (163)

C0(ξ = 0) = qEA C0(ξ → ∞) = 0 (164)

thus C0 describes the slow decay of the correlation function from qEA to zero. The initial
conditions for R0, R1 are obtained from the FDT, the QFDT and the continuity condition
for C.
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On timescales τ � t0 FDT holds, so C1(τ ) obeys a dynamical equation similar to (157).
The equations for C0(ξ) and R0(ξ) are more complex, however it can be proved [132] that
they are related by the QFDT relation

R0(ξ) = −βxθ(ξ)∂ξC0(ξ) (165)

with 0 � x � 1 given by

x = (p − 2)(1 − qEA)

qEA
. (166)

Within the replica formalism the parameter x corresponds to the location of the discontinuity
in the order parameter q(x). However, different to the static calculation, where x is fixed by
the requirement of stationarity of the replica free energy F with respect to x, the dynamical
calculation requires that ∂xF be maximal (marginal condition) [132]. This condition is
equivalent to the condition of a maximal configurational entropy [42, 73, 77], so that the
dynamics is dominated by the states with the largest degeneracy (threshold states).

The Sompolinsky approach has several similarities with the static approach, and indeed
in the static limit it correctly reproduces the static results obtained within the Parisi scheme.
However, it suffers from some problems which are difficult to amend since it would require
detailed knowledge of the dynamics for a large but finite system. One among the most
serious inconsistencies of the Sompolinsky dynamics is that FDT violations, as given in (165),
satisfy TTI. This is untenable in the aging regime of purely relaxational systems (although not
necessarily in driven systems) where TTI is clearly violated. It must be noted though, that the
Sompolinsky approach was never proposed to explain aging, since it is eliminated from the
theory at the beginning.

For this reason there have been various attempts to amend the solution. One possibility,
proposed by Horner [32, 132, 142, 143], consists of cooling the system, at finite cooling rate
from T > Tc to T < Tc. This introduces a regularization timescale, the inverse of cooling
rate, which is eventually sent to infinity at the end. Another approach [32], consist in making
the disorder time-dependent hence restoring ergodicity on timescales larger than the disorder
typical timescale.

The above methods assume in one way or another equilibrium, thus cannot describe
non-equilibrium properties typical of glasses such as aging, see section 4.1. To tackle them, a
different scheme has been proposed by Cugliandolo and Kurchan [52]. The main difference
lies in that the thermodynamic limit is taken before any large time limit, including the initial
limit ti → −∞. Differing from the Sompolinsky approach this is a non-equilibrium scheme
since the system evolves from a non-equilibrated initial configuration. As the system evolves in
time the dynamical free-energy density decreases, and the system explores an ever decreasing
portion of phase space. The weak ergodicity breaking [40] describes this non-equilibrium
regime before equilibrium is reached. In this scenario the important parameter is the waiting
time tw, i.e., the time elapsed since the quench into the low-temperature phase. For longer
waiting times, the system can explore deeper minima becoming less susceptible to external
perturbations and hence ages. The weak ergodicity breaking scenario can be summarized in
the following assumptions:

(i) After any time tw the system continues to drift away and asymptotically reaches the
maximum allowable distance. Thus the correlation functions satisfy

∂τC(τ + tw, tw) � 0 ∂sC(t, s) � 0 (t > s) (167)

and in the absence of external magnetic fields

lim
τ→∞ C(τ + tw, tw) = 0 for any fixed tw. (168)
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(ii) The response to a constant small magnetic field applied from s = 0 to s = tw ,—i.e. the
TRM MTRM(t, tw)—decays to zero after long enough times

lim
t→∞

∫ tw

0
dt ′R(t, t ′) = lim

t→∞ MTRM(t, tw) = 0 (169)

for any fixed tw .
(iii) The evolution of the two-times correlation function presents two distinct regimes. After

a long time s, but τ = t − s small, the correlation decays from 1 at equal time to a plateau
value qEA defined as

qEA = lim
τ→∞ lim

s→∞ C(τ + s, s). (170)

This fast decay corresponds to a fast relaxation towards a local minimum. In this time
sector the system behaves as if it were in a local equilibrium, and both TTI and FDT
hold. The value of qEA measures the size of the local minima or, equivalently, the width
of the channel through which the system evolves. This fast relaxation is followed by a
slow decay of C below qEA and the exploration of different minima. Since the depth of
minima increases with time, C decays from the plateau in a manner that depends on both
s and τ . To show the two processes (i.e. the contribution from fast and slow motion) the
response and correlation functions are split into two different terms, in a fashion similar
to that used in the Sompolinsky scheme,

C(t, s) = Cst(t − s) + Cag(t, s) R(t, s) = Rst(t − s) + Rag(t, s) (171)

with

Cst(t − s = 0) = 1 − qEA Cst(t − s → ∞) = 0 (172)

Cag(t, t) = qEA lim
t→∞ Cag(t, s) = 0. (173)

The assumption of local equilibrium implies that FDT is satisfied by the fast motion:

Rst(t − s) = βθ(t − s)∂sCst(t − s). (174)

On long timescales, however, FDT is violated and replaced by (cf equation (165))

Rag(t, s) = βX[Cag(t, s)]θ(t − s)∂sCag(t, s) (175)

with the ansatz that X depends on time only through Cag. The two forms of FDT can
conveniently be condensed into one extending the definition of Xas X(z) = 1 for qEA � z � 1.
Then we can write

R(t, s) = βX[C(t, s)]θ(t − s)∂sC(t, s) (176)

where C and R are the full correlation and response functions. For the FDT part the MCT-
like equations (157) are recovered. To derive the equations for the non-FDT part the time
derivatives are neglected since Cag and Rag are slow varying functions:

∂tCag(t, s) ∼ ∂sCag(t, s) ∼ 0 for large t, s. (177)

As a consequence the solutions are time-reparametrization invariant, i.e., the solutions are
invariant under the transformation

Cag(t, s) ⇒ Cag(h(t), h(s)) Rag(t, s) ⇒
[

dh(s)

ds

]
Rag(h(t), h(s)) (178)

where h(t) is an arbitrary (well-behaved) function. The full dynamical solution obviously
does not have such an invariance. This ambiguity stems from the fact that equations are only
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the first order equations of an asymptotic expansion. If higher order terms are included the
ambiguity is removed, however we shall not discuss this problem. Motivated by the fact that
the relevant timescale in slow relaxation motion is given by the waiting time, one looks for a
solution of the form [52]

Cag(t, s) → Cag(h(t)/h(s)). (179)

The selection of the correct function h(t) is still an open problem that requires the matching
of the short- and long-time regimes. Numerical solution of the dynamical equations [52]
suggests a power law h(t) ∼ tλ.

An analysis of the correlation function near the plateau qEA [144], similar to that done
in the high-temperature phase [132], reveals the following scenario. As found in the high-
temperature phase, the decay of the correlation function to the plateau qEA is a power law with
a temperature-dependent exponent. The subsequent departure from the plateau is still a power
law with another temperature-dependent exponent, but differing from the high-temperature
phase in that it is also tw dependent,

C(τ + tw, tw) ∼ qEA + caτ
−a C � qEA (180)

C(τ + tw, tw) ∼ qEA − cb

(
τ

Tw

)b

C � qEA (181)

with Tw = [d ln h(tw)/dtw]−1 an effective waiting time. The exponents a and b are related,

�2(1 − a)

�(1 − 2a)
= X

�2(1 + b)

�(1 + 2b)
= (p − 2)(1 − qEA)

2qEA
(182)

where qEA is determined by the marginal condition

µ(p − 1)q
p−2
EA = 1

(1 − qEA)2
(183)

X(C) = (p − 2)(1 − qEA)

qEA
if C < qEA (184)

and X(C) = 1 otherwise.
Here we did not consider the case of non-zero external field, this was studied in

[131, 132]. Another extension of the p-spin spherical model is the case of multiple phases
treated in [145–148]. It is interesting to note that depending on the degree of non-linearity of
the interaction three different scenarios for the transition can be observed [147]. Finally, it is
worth noting that the p = 2 version of the model has the property of being solvable even for
intermediate timescales [149–153] or finite sizes [154].

6.2.2. The Sherrington–Kirkpatrick model. The Sherrington–Kirkpatrick (SK) model
[129, 130] belongs to the class of continuous spin-glass models characterized by a low-
temperature spin-glass (SG) phase of ∞-RSB type with a continuous order parameter function
q(x). The transition to the SG phase is continuous with a q(x) which grows continuously from
zero as T is lowered below Tc. Other models in this class are, e.g., the case of a particle in a
long-range correlated random potential [155] or spherical models with mixture of p = 2 and
p > 3 interactions [145, 147]. For T > Tc and large times the correlation function decays to
zero in the absence of external fields. However, differing from the discontinuous SG models,
it does not exhibit a plateau at qEA for T slightly above Tc. The SK model without external
fields is defined by the Hamiltonian

H = −
∑
i<j

Jijσiσj (185)
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where the interactions Jij are independent quenched Gaussian variables of zero mean and
variance

(Jij )2 = J 2

N
. (186)

As done previously J can be set equal to 1 by rescaling the temperature. The spin variables
can be either Ising spins (σ = ±1) or soft spins in which case an extra term may be added to
the Hamiltonian to control fluctuations. The first choice is used in static calculations, while
the second is preferred in a dynamical approach.

The ∞-RSB structure of the SG phase reflects a completely different topology of the
phase space. Again below Tc the phase space is broken into a large number (exponentially
in N ) states, but now the overlap between states can take any value from 0 to qEA. The
equilibrium states are organized in an ultrametric fashion with non-extensive barriers, O(Nα)

with α ∼ 1/3, between them. The TAP analysis shows that the TAP solutions tend to split
as the temperature is lowered in a fashion similar to a second order transition. Moreover, the
spectrum of the Hessian matrix of the solution extends down to zero, leaving the possibility
of finite free-energy barriers. All these facts lead to a dynamical scenario quite different from
that discussed in section 6.2.1.

The relaxational dynamics of the soft-spin version is given by Langevin equations similar
to (153), (154) and the self-consistent dynamical equations for the two-times correlation and
response functions were first derived by Sompolinsky and Zippelius [134, 156]. These are
more involved than those of the spherical case because spin variables cannot be integrated
away and hence will not be reported here. However, near the critical point the dynamical
equations can be written in the MCT form (157), (147) with suitable v1 and v2 [157]. The two
parameters v1 and v2 are not independent and their particular form leaves only the possibility
of the type A transition with qEA growing continuously from zero at Tc.

Above the critical temperature Tc no ergodicity breaking occurs, and the solutions are
TTI and satisfy FDT. Below Tc the ergodicity is broken and some scheme must be adopted for
the long-time dynamics. In the Sompolinsky approach [141], as discussed in the preceding
section, one assumes that the initial time is sent to −∞ keeping the system size large but finite
so that the system can equilibrate, and only then is N sent to ∞. Two-time quantities such
as correlations and responses are then trivially TTI, but FDT may not be necessarily satisfied
for the infinite-size system due to the emergence of infinitely high (free-)energy barriers for
N → ∞ where freezing of some degrees of freedom confines the system to a portion of the
available phase space. In the finite system, in contrast, all barriers can be surmounted in a
finite (but large) time, so the degrees of freedom can be frozen only for times smaller than the
typical timescale for barrier crossing. The large number and complex structure of states in the
phase space led Sompolinsky to postulate a set of very long timescales, eventually diverging
for N → ∞, for (free-)energy barrier crossing. The times are organized hierarchically, i.e.,
denoting them with tx , where x is an index varying for convenience in [0, 1], then

lim
N→∞

tx = ∞ but
tx′

tx
→ ∞ if x > x ′. (187)

to account for the ultrametric organization of states. When the system is observed at time
tx � t � tx′ all degrees of freedom with relaxation times tx shorter then t will have relaxed
completely, while those with longer relaxation times will remain essentially frozen and cannot
contribute to the response at time t to an external perturbation at time zero. The FDT must
then be modified to account for the missing contribution of the frozen degrees of freedom.
This leads to an anomalous response term in the response function which measures the degree
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of FDT violation. Since barriers with timescale larger than t = tx cannot be crossed the
correlation function cannot decay to zero but relaxes to

q(tx) = 〈σi(tx)σi(0)〉. (188)

In the thermodynamic limit these partially relaxed states will become stable states of typical
size q(x) = q(tx) since barriers with timescale larger than tx cannot be surmounted anymore,
while those with timescale smaller than tx have already been crossed several times. The
overlap q(x) is a non-decreasing function of x and corresponds in the thermodynamic limit to
the Parisi order parameter function of the static calculation. The correlation time-persistent
part q(tx) can be written as a sum of contributions from unrelaxed degrees of freedom [141]
(cf (162) for one timescale):

q(tx) =
∑
x′<x

q ′
x′ . (189)

Since the system is equilibrated for timescales smaller than tx FDT must be satisfied on
that timescales. The presence of a time-persistent part in the correlation function and the
requirement of FDT for timescales smaller than tx leads to an extra term (cf (162) for one
timescale), called the anomalous response term and denoted by �′

x , in the response function
[141, 158].

Like Parisi’s, the Sompolinsky derivation of the self-consistent equations for the overlap
and the anomalous response term is heuristic but allows for a dynamical theory which presents
many similarities with the static solution. Differing from the usual Parisi solution, however, the
Sompolinsky solution is expressed in terms of two order parameter functions: the overlap q(x)

and the integrated response function �(x), sum of the anomalous response function terms.
This extra freedom, called ‘gauge invariance’, reflects the time-reparametrization invariance
of the Sompolinsky solution: any reparametrization tx → h(tx) where h(t) is an arbitrary
well-behaved function preserving relations (187) will lead to an acceptable solution. We
have already encountered these properties when discussing non-equilibrium solutions of the
spherical p-spin model in section 6.2.1. This fact should not be surprising since it only reflects
our lack of knowledge on how the barrier-crossing timescales diverge in the thermodynamic
limit. Conversely, we may also say that this invariance is intrinsic in any mean-field solution
since the details on how barriers diverge are irrelevant, the only important point is that they
diverge. We note indeed that the gauge invariance of the Sompolinsky solution has its static
counterpart in the invariance of the replica solution under replica permutations. The Parisi
solution corresponds to the ‘special’ gauge [141]

�′(x) = −βxq ′(x) (190)

where the prime means derivation, which relates the anomalous response term to the derivative
of the overlap (or time-persistent correlation) at timescale tx (cf (175)). Equation (190), known
by the name of Parisi’s gauge, is actually an FDT relation.

As already noted in section 6.2.1 the Sompolinsky solution, and its variants, are
equilibrium solutions and cannot account for aging phenomena found in spin-glass
experiments. To deal with them Cugliandolo and Kurchan have proposed a non-equilibrium
scheme in which the thermodynamic limit N → ∞ is taken before any large time limit,
including the initial time limit ti → −∞, to force the system to a non-equilibrium state [52].
This procedure drives the system to a non-equilibrium regime named weak ergodicity breaking
in which TTI is lost and the system displays aging, see section 6.2.1 for more details. The TTI
is recovered only for small time separations (the so-called FDT regime) where the dynamics is
described by Sompolinsky-like equations and the correlation function approaches the plateau
C = qEA with the power law form (180) with a temperature-dependent exponent a.
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The departure from the plateau, i.e., the aging or non-FDT regime, is more complex since
the presence of many different timescales related to different (free-)energy barriers must be
taken into account, and representations such as (179) or (181) cannot be adequate. Adapting
the Sompolinsky picture of many timescales to the weak ergodicity breaking regime the non-
equilibrium relaxation from time s to time t is due to the crossing of (free-)energy barriers with
timescales between s and t. Then, using the time-reparametrization invariance of mean-field
solutions, (179) is replaced by the asymptotic form valid for large times [53] (cf (189)),

Cag(t, s) ∼
∑

i

C(i)
ag (hi(t)/hi (s)) (191)

where each contributing term C(i)
ag will vary in each separate time sector defined by two

successive barrier crossing and, as in the case of one timescale, the functions hi(t) could be
power law with a time sector dependent exponent hi(t) ∼ tλi . Using the fact that correlations
decrease as times become more and more separated, it is possible to show that for large times
the following relation must hold,

C(t3, t1) = f [C(t3, t2), C(t2, t1)] t1 � t2 � t3 (192)

where f is an associative function which defines the geometry of the triangles described by the
trajectory in the phase space [53]. Next one defines the fixed point qi of f as f (qi, qi) = qi .
The intermediate value of the correlation between two successive fixed points defines a time
sector. We note that triangles whose sides belong to different timescales, e.g., C(t3, t2) < qi

but C(t2, t1) > qi , are isosceles with C(t3, t1) = min[C(t3, t2), C(t2, t1)]. This defines an
ultrametric geometry analogous to what is found in equilibrium calculations,

C(t3, t1) = min[C(t3, t2), C(t2, t1)] (193)

if at least one C(t3, t2), C(t2, t1) is less then qEA.
The set of fixed points qi can be either discrete or continuous. In the latter case, the

correlation (191) is the limit case of a continuous sum of infinitely many scaling functions
Ci

ag. As for the Sompolinsky approach, the term (191) in the correlation function implies an
analogous term in the response function (see (171)) which can be related to the correlation
function through (175) with an X(C) no longer constant for C < qEA but which coincides
with the function x(q) of the static treatment [159].

We note that for the spherical p-spin model x(q) evaluated from statics is different from
that evaluated from dynamics [52, 131, 132]. It can be shown that a sufficient condition
for the equality between the static x(q) and X(q) is that the system is stochastically stable
[160, 161], i.e., the overlap probability distribution Pε(q) of the system in the presence of
a small perturbation must smoothly converge towards the probability distribution of the
unperturbed system when ε → 0. Moreover, the limit ε → 0 must also commute with
the limit of large times in the dynamics. If this is the case, x(q) and X(q) are then equal.
This result holds for mean-field spin glasses with continuous RSB such as the SK model, but
not for the spherical p-spin model where the dynamics is dominated by long-lived metastable
states.

6.3. Random manifolds and diffusive models

The basic ingredient of a glass behaviour is the appearance of a multitude of long-lived states,
that prevent exploration of the whole phase space. This situation is not restricted to glasses
but may be present in several, apparently unrelated, far from equilibrium problems. Typical
examples have been discussed in the previous sections, here we shall comment a bit on random
manifolds and diffusion models.
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A typical situation where glassy behaviour shows up is when studying the dynamics of an
elastic manifold, with or without internal structure, in a random quenched environment. This
problem appears, for example, in flux lattices in high-Tc superconductors [162], interfaces
in random fields [163], charge density waves, and surface growth on disordered substrates
[164, 165]. The competition between elastic stress and disorder produces a state with many
characteristics of a glass: slow dynamics, non-linear macroscopic response, aging and so on
[144, 166]. In the mean-field limit a manifold in a random media is described by a field
theory with a large number of components. In this case, it is possible to derive a closed set of
dynamical equations of the type discussed for spin-glass models. The model of a manifold of
dimension d embedded into a random medium of dimension N is described by the Hamiltonian

H[φ(x)] =
∫

ddx
( c

2
|∇φ(x)|2 + V [φ(x),x] +

µ

2
φ(x)2

)
(194)

where the N component field φ = (φ1, φ2, . . . , φN) gives the displacement of the manifold.
The mass term µ constrains the fluctuations of the manifold to a restricted volume of the
embedding space. The potential term V is a Gaussian variable of zero mean and correlations

V [φ,x]V [φ′,x′] = −Nδ(x − x′)V
[
(φ − φ′)2

N

]
. (195)

A common choice for V is

V(z) = (θ + z)1−γ

2(1 − γ )
(196)

where θ is the free-energy fluctuation exponent. The models are divided into ‘long-range’
models if γ < 1 and ‘short-range’ models for γ > 1 since in the first case correlations grow
with distance, while in the second case they decay.

The study of the static (equilibrium) properties of the d = 0 limit [167], i.e. the case of a
particle moving in a random potential, reveals that the short-range case is solved by a 1RSB
ansatz, while in the opposite case of long range the full RSB scheme is needed.

The manifold dynamics is given by the usual Langevin equations,

∂

∂t
φ(x, t) = −δH[φ(x)]

δφ(x, t)
+ η(x, t) (197)

where η is a Gaussian random process of zero mean and variance

〈ηµ(x, t)ην(x
′, t ′)〉 = 2T δµνδ(x − x′)δ(t − t ′). (198)

To study the long-time dynamics one introduces two-time quantities, which for the simple
case of d = 0 are the usual correlation and response functions

C(t, s) = 1

N
〈φ(t) · φ(s)〉 R(t, s) = 1

N

δ〈φ(t)〉
δh(s)

(199)

where h(s) is a small perturbation applied at time s < t . In addition, one also considers the
mean-square displacement correlation function

B(t, s) = 1

N
〈[φ(t) − φ(s)]2〉

= C(t, t) + C(s, s) − 2C(t, s). (200)

The analysis of the long-time dynamics for N → ∞ reveals that in both cases (long-
and short-range models), two regimes can be defined in the relaxation from an initial random
configuration: (i) FDT regime for large waiting time tw and not too large time difference; (ii)
non-FDT regime for large tw and time differences. Under the assumption of a weak ergodicity
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Figure 8. FD plot in the model of directed polymers in random media revealing the 1RSB or
two-timescale character of the dynamics. From [168].

breaking scenario, the FDT in the non-FDT regime can be replaced by the generalized form
(176) with a function X which is different for short- and long-range models [144]. For short-
range models, X(C) is solved with the two-timescale ansatz, i.e., it is 1 in the stationary
sector while it is a constant smaller than 1 in the aging sector. For long-range models many
timescales are needed, and X(C) is a non-trivial non-constant function, as found for the SK
model. This scenario has been extended to the d > 0 case in [166].

Related studies have analysed FDT violations in polymer models. Yoshino [168]
considered the directed polymer model in random media (i.e. the random manifold (194)
with c = 0 and N = d = 1) and through numerical simulations confirmed the two-timescale
character of aging dynamics, see figure 8. Pittard and Shakhnovich [169] have considered a
heteropolymer model with uncorrelated monomer–monomer interactions. By analysing the
mode-coupling equations they found a two-timescale solution that violates FDT as reported
for the random manifold model in the short-range case.

The dynamics of the directed polymer reduces to pure diffusion in the absence of disorder.
This is the well-known random walk which in the continuum limit is represented by a stochastic
variable x(t) satisfying the (stochastic) differential equation

d

dt
x(t) = η(t) (201)

where η is a Gaussian random process of zero mean and correlation

〈η(t)η(s)〉 = 2T δ(t − s) (202)

and T is the bath temperature. A simple calculation gives for the two-time correlation and
response functions

C(t, s) = 〈x(t)x(s)〉 = 2T min(t, s) (203)

R(t, s) = δ〈x(t)〉
δh(s)

= θ(t − s) (204)

where h(t) is an external field added to the lhs of equation (201). As a consequence, we see
that for any t and s

X(t, s) ≡ T R(t, s)/[∂C(t, s)/∂s] = 1/2 (205)
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a constant value different from 1 so that the FDT [170]. Despite violation of FDT, the model
is simpler than those discussed above, indeed the correlation and the IRF show a rather simple
form as a function of the waiting time:

C(t, s) = 2T s χ(t, s) =
∫ s

0
dt ′R(t, t ′) = s. (206)

They both depend on s but not on t (as required by causality). This is a rather extreme example,
however other less trivial cases, such as spinodal decomposition, scalar fields at criticality and
so on also exhibit non-trivial non-equilibrium behaviour [170]. More complicated non-linear
diffusion effective models have been shown [171, 172] to display FDT violations compatible
with a one-timescale aging scenario with a single valued FDR X(tw) < 1 that monotonically
converges to 1 as in entropic models (section 6.5).

6.4. Trap models

A successful family of models to describe the glass transition are phenomenological trap
models. The dynamics in the aging regime can be understood in terms of jumps among
different phase space components, each jump corresponding to a new rearrangement of a
cooperative spatially localized region. The dynamics of the system can then be viewed as
an intermittent motion where some regions remain inactive for a long time (and no net heat
current is present between the system and its surroundings) until an activated jump occurs and
thermal heat is released from the system to the surroundings, and from there, to the thermal
bath. Phenomenological trap models, contrary to mode-coupling theories, are based on the
activated nature of glassy dynamics. Although trap models have appeared from time to time
in the literature (see [39] and references therein) the most recent and successful study is due
to Bouchaud [40] who has considered its relevance to describe aging phenomena in glassy
systems.

The trap model corresponds to a set of unstructured energy (or free energy) traps that
live in a ‘free-energy space’ without any explicit reference to real-space configurations. It
corresponds, in many aspects, to the coarse-grained description developed in section 4.2 where
activated processes are represented as transitions between different phase space components
R that here could be visualized as traps. The number of traps, like the number of components
R in the coarse-grained description of the phase space, is exponentially large with the volume
of the system. The model is defined by a set of traps of different depths E (with E > 0)
with a density ρ(E) and a distribution of escape times given by the Arrhenius expression
τ (E) = τ0 exp(E/T ) where τ0 is a microscopic time and T is the temperature of the bath.
Note that, in this last expression, the top level for all barriers is fixed at zero height. The
dynamics of the trap model is then described by the ME (79) discussed in section 4.2 in terms
of the probability function P(E, t) that specifies the probability that the system stays in a trap
of energy E at time t,

∂P (E, t)

∂t
=

∑
E′

P(E′, t)Z(E|E′) −
∑
E′

P(E, t)Z(E′|E). (207)

The rates Z(E|E′) are assumed to be given by (82)

Z(E|E′) = W(E|E′)ρ(E) = ρ(E)

τ(E′)

∫ ∞

0
ρ(E) dE = 1 (208)

where we have identified �(F ′, T ) ≡ ρ(E′) and where the bare rate W(E|E′) = 1/τ(E′)
has the dimensions of a frequency. Note that this bare rate only depends on the energy of
the departure trap but not on the energy of the arrival trap. Other versions of the trap model
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include a dependence on the energy on the arrival trap, see for instance [173]. Inserting (208)
into (207) we obtain

∂P (E, t)

∂t
= ω(t)ρ(E) − P(E, t)

τ (E)
(209)

where

ω(t) =
∫ ∞

0
dE′ P(E′, t)

τ (E′)
. (210)

The rates (208) satisfy detailed balance if P eq(E) ∝ ρ(E)τ(E), where limt→∞ P(E, t) =
P eq(E). The Bouchaud trap model (BTM) [40] is described by the distribution ρ(E) =
(1/Tg) exp(−E/Tg). The static formulation of such a model corresponds to the random
energy model (REM) of Derrida [174, 175]. Other trap models have considered a Gaussian
distribution of energies [39, 176]. However, the main interest of the model proposed by
Bouchaud is the existence of a critical temperature Tg where the distribution P eq(E) ceases
to be normalizable. In general, for any distribution ρ(E) the temperature T0 that marks the
onset of the non-normalizability of P eq(E) is given by [177],

1

T0
= − lim

E→∞
log(ρ(E))

E
(211)

the BTM corresponding to the case T0 = Tg. Let us note that, in the trap model, energies are
not extensive but finite. Comparing the BTM with the REM, where energies are extensive, we
observe that the finite T dynamics in the Bouchaud model occurs in a range of finite energies
around E0, the value at which the energy freezes in the REM below Tg. The same exponential
distribution of states, over a finite free-energy interval, is found in the SK model [35, 48].

Dynamics in the trap model has been exhaustively investigated in many works. In
particular, it offers a rather good explanation of magnetic relaxation phenomena observed in
spin glasses [40, 178, 179], viscosity anomalies in glasses [176, 177, 180] and, more recently, it
has been used as a test model to check whether FDT violations are well described by the ansatz
(91) and whether FD plots are meaningful [54, 55]. Correlation and response functions can be
defined in the BTM by assigning magnetizations to the different traps as is done to analyse the
statics of the REM. The effect of the magnetic field on the traps is to modify the escape time
by the relation τh(E) = τ0 exp((E + mh)/T ) = τ (E) exp(mh/T ). The resulting FD plots
have been analysed by Sollich and co-workers [54, 55]. As remarked in [54, 55], equal time
correlations can be unbounded so proper FD plots are constructed from the raw plots (102)
by normalizing correlations and IRF by the equal times correlation at the later time CA,B(t, t)

as described in (104). The ME (209), modified to include the effect of the field, is described
by a probability distribution P(E,m, t) = P(E, t)σ (m|E) where σ(m|E) is the probability
that a trap of depth E has magnetization m. This probability is assumed to be a Gaussian
parametrized by its mean m(E) and variance �2(E). As there is no specific meaning attached
to the observable m one can think of the two functions m(E),�2(E) as describing different
class of observables. Therefore, observable dependence in the BTM refers to dependence
of the FD plots on the choice of these functions. The following cases have been considered
[54, 55]: m(E) = exp(nE/2T ),�2(E) = 0 or m(E) = 0,�2(E) = exp(nE/T ) with
n > T − 1 in both cases. Figure 9 shows some typical FD plots.

There are three main results of this study: (1) the FD plots strongly depend on the average
and the variance of the Gaussian distribution, therefore the FDR and the effective temperature
are observable dependent; (2) most importantly, for a given choice of observables the effective
temperature (132) smoothly changes with time within a given time sector. In fact, in the trap
model the scaling t/tw is fulfilled in the glassy phase T < Tg but two straight lines (typical
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Figure 9. Normalized FD plots (104) for the BTM for a Gaussian distribution of trap magnetizations
with zero mean and variance �(E) = exp(nE/T ) for different values of n and T = 0.3
(τ0 = Tg = 1). For each n times shown are 106, 107 which are indistinguishable since the
limiting FD plot has been reached. Note, however, that a temperature factor has been absorbed in
χ̃ in such a way that the slope is −1 at equilibrium (dashed line). From [54, 55].

of two-timescale glassy systems) are not observed in the FD plots; (3) for all observables
X∞ = 0, see (231), supporting the conjecture that this quantity is indeed universal and may
have some physical meaning (see section 6.6).

Among these results (2) seems particularly interesting. Why plots FD do not display the
characteristic two-step form of relaxational systems with two timescales? Still for observables
with zero mean and finite (but E independent) variance where C(t, t) = �2, i.e. for observables
that can be considered neutral (see discussion in section 4.4), the one-step shape of the limiting
FD plot is absent. The origin of this discrepancy is presently unknown and finding a trap model
that shows a two straight-line FD plot remains an interesting open problem9. Let us finish these
considerations by noting that FD plots, such as that depicted in figure 9, are more characteristic
of systems with full RSB where X(C) is a non-trivial function. Quite interestingly, it has
been shown [179] that the BTM at the critical temperature T = Tg has correlations that do not
fulfil the simple t/tw scaling but a more complicated dependence with many time sectors and
ultrametricity. However, the resulting FD plot at criticality shows only very small deviations
from the equilibrium behaviour X = 1, being very similar to the FD plot observed in the Ising
chain [182] (see section 6.6).

Just before ending this section, let us recall that these results have been endorsed by
considering the corresponding driven version of the BTM introduced in [183, 184] in the
context of rheology. In this case, as explained in section 7.4.1, the equivalent of the waiting
time is the inverse of the shearing rate. In the stationary state TTI is satisfied but FDT violations
persist. For the driven model [185], as well as for the purely relaxational model, the same
relationship between correlations and responses holds and the two models (the non-driven and
the driven one) show similar behaviour.

6.5. Models with entropy barriers

Many of the results described in the previous subsections deal with disordered models with
complex thermodynamics. However, many aspects of the violations of the equilibrium FDT

9 After completion of this work, it has been shown that the influence of the dependence of the perturbed rates in a
field (upon the observable value taken at the arrival trap) is crucial to get well-defined limiting FDRs and effective
temperatures [181].



Topical Review R237

E

{configuration space}

Figure 10. A typical energy landscape in a glassy model determined by the presence of entropy
barriers. The effective barrier log(τ (E)) increases as E decreases. From [187].

as well as the existence of an QFDT can be investigated in the framework of simpler models
that are exactly solvable but still retain the key ingredients for the emergence of these new
properties. In turn, this can help to identify the basic ingredient that any sensible general
theory must incorporate.

The scope of this section is mainly illustrative as it intends to present some of the basic
ideas of section 4.2 applied to very simple examples. We will focus our discussion on the
oscillator (OSC) and the backgammon (BG) models. A comprehensive account of other results
about these models can be found in a recent review [15]. Both models have a simple energy
landscape and dynamics is determined by the presence of entropy barriers. The intuitive
meaning of this term is the following. In general, relaxation in glassy models proceeds by
activated jumps over energy barriers that allow the system to escape from a given trap after
reaching a barrier of height B, the typical time needed in this process being given by the
Arrhenius law τ ∼ exp(B/T ). Activated dynamics is strongly temperature dependent, and
for T = 0 the dynamics is completely arrested, the system remains trapped forever and
correlations no longer decay to zero (ergodicity is broken). When the dynamics is dominated
by entropy barriers the relaxational mechanism is different. The system escapes from a
trap through a process which involves a timescale τ which does not directly depend on the
temperature but, for instance, on the typical energy E of the trap itself, τ (E), which usually is
a decreasing function of the energy E (see figure 10)10. At T = 0 relaxation is not arrested but
proceeds slower as the energy decreases. This type of dynamics is sometimes called marginal
dynamics [186] as the system wanders around saddle point configurations, hence is never
arrested. Of course, the temperature dependence of the relaxation time in entropic models can
appear as effectively activated: at finite (but low) temperatures the maximum value of τ (E)

corresponds to the lowest energy reached, i.e. τ (Eeq(T )), Eeq(T ) denoting the equilibrium
energy. The temperature dependence of the relaxation time in equilibrium τ (Eeq(T )) is
activated in most entropy barrier models. A phenomenological description of these entropy
models has been introduced by Barrat and Mezard [173] who have generalized the BTM to the
case where the distribution of trapping times is itself a time-dependent function. The oscillator

10 Now we assume the standard convention for energies being negative rather than positive as in the trap model.
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and backgammon models described in this section are microscopic versions of this entropic
trap model. According to the scenario presented in section 4.2, the role of entropy appears
to be important as relaxation in many glassy systems is accompanied by the emergence of a
non-equilibrium microcanonical ensemble which determines fluctuations and responses in the
aging state, leading to the existence of QFDT and an effective temperature. This fact suggests
that a deep comprehension of the glassy dynamics in exactly solvable entropy barrier models
can be a first step towards grasping the leading aspects behind the behaviour of more realistic
systems, where both entropy and energy barriers simultaneously intervene.

6.5.1. Oscillator models. We begin our discussion by describing the OSC model in its
simplest version. A review of some results can be found in [15, 68, 188]. Originally,
oscillator models were introduced indirectly in the analysis of the Monte Carlo dynamics of
the spherical Sherrington–Kirkpatrick model, which can be mapped to a set of disordered
harmonic oscillators [189, 190]. The OSC model is obtained by simplifying the previous one
to an ensemble of identical harmonic oscillators [191]. The OSC model is defined by the
following energy function,

E = K

2

∑
i

x2
i (212)

where the xi are real-valued displacement variables for the N oscillators and K > 0 is the
Hooke constant. The equilibrium properties are trivial due to the absence of interactions, but
the Monte Carlo dynamics couples the oscillators in a non-trivial way. Moves are proposed
according to the following rule,

xi → x ′
i = xi +

ri√
N

(213)

where the ri are Gaussian random variables with zero mean and variance �2. Moves are
accepted according to the usual Metropolis rule. Each move is a parallel update of the
whole set of oscillators. Both the energy function (212) and the dynamics (213) are invariant
under rotations in the N-dimensional space of the xi . This symmetry makes the dynamics
exactly solvable, and many non-equilibrium quantities, e.g., effective temperatures and FDT
violations, can be tackled analytically.

The OSC model is a classical model where the equilibrium entropy is given by
S(T ) = 1

2 log(T ), thereby diverging when T → 0 as expected for a continuous model (the
ground state is a zero-measure state corresponding to the absolute global minimum of (212),
i.e. the configuration xi = 0,∀i). At T = 0 only those moves that decrease the energy are
accepted, therefore as the system approaches the global minimum the frequency of accepted
moves (213) dramatically decreases. However, that frequency never vanishes so dynamics is
never arrested. Dynamics slows down because phase space directions where energy decreases
are exceedingly difficult to find. The full solution of the OSC model has been presented in
[191].

The main physical quantity containing detailed information about the dynamical evolution
is the probability density of energy changes P(�E). This quantity expresses the probability
density that a proposed move (213) changes the total energy of the ensemble by the amount
�E. P(�E) was originally derived in [191] using standard integration tools. Here we
present two other alternative derivations which help to understand the mechanisms behind
slow relaxation.

The first method relies on the Gaussian form of the distribution while the second one uses
a microcanonical argument to count the number of accessible configurations from a reference
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Figure 11. Geometrical construction to compute P (�E). The thick lines denote the departing and
final energy hypersurfaces centred at O. The dashed circle indicates the hypersurface accessible
from point P. The intersection region between the accessible hypersphere centred at P and the final
hypersurface of energy E′ defines a hypersurface I of radius C (the radius is represented by a thick
line). See the text for explanation.

configuration with a given energy E. The first derivation is rather simple as the distribution for
�E can be easily obtained. Indeed using (212) and (213)

�E = K√
N

∑
i

xiri +
K

2N

∑
i

r2
i (214)

and the Gaussian property of ri , it follows that �E has a Gaussian distribution. The mean
and variance of the distribution are M�E = �E = K�2/2, σ�E = (�E)2 − (�E)2 =
2EK�2/N , yielding [191],

P(�E) = (
4πeK�2

)− 1
2 exp

[
−
(
�E − K�2

2

)2

4eK�2

]
(215)

where e = E/N is the energy per oscillator.
The second method to derive (215) is based on a microcanonical computation. In figure 11

we depict a schematic two-dimensional (2D) representation of the motion of a representative
configuration in phase space. The reference configuration

{
x0

i

}
at a given time has an energy

E and lies on the spherical hypersurface of radius R = √
2E/K (depicted as the point P in

the figure) with centre at the origin {xi = 0} (point O in the figure). The smaller dashed circle
represents the region of points accessible from

{
x0

i

}
according to the dynamics (213). All

accessible points {xi} satisfy
∑

i

(
xi − x0

i

)2 = �2, i.e. lie at a distance � from
{
x0

i

}
which

is the radius of the smaller dashed circle. The accessible configurations in a single move
lie in a spherical hypersurface of dimension N − 2 corresponding to the intersection of the
hypersurface of energy E′ and the smaller spherical hypersurface of radius �. We call this
region the intersecting region I as shown in figure 11. The final configurations contained in
I lie at a distance R′ = √

2E′/K to the origin O. The change in energy associated with this
transition is �E = E′ − E. The probability of this jump is therefore proportional to the
surface of the intersection region, P(�E) ∝ CN−2, where C is the radius of the intersecting
region. The computation of C is quite straightforward as can be deduced from the triangle
including the points P, O as vertices and whose three sides are R,R′,�. In terms of R,R′

and �, the distance C is given by the relation

C2 = �2 − K

8E

(
2�E

K
+ �2

)2

. (216)
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Figure 12. Probability density of the energy of the proposed moves for different values of the
energy E as defined in figure 11.

The surface �(E,�E) corresponding to the region I of radius C, relative to the energy E of
the reference configuration x0 is

�(E,�E) ∝ CN−2 =
[
�2 − K

8E

(
2�E

K
+ �2

)2
] N−2

2

. (217)

Using the fact that E is extensive with N this expression can be rewritten as

�(E,�E) ∝ exp

[
−
(
�E − K�2

2

)2

4(E/N)K�2

]
(218)

which is proportional to the probability distribution (215).
The distribution P(�E) is depicted in figure 12 for different values of the energy. As E

decreases the number of moves with �E < 0 shrinks as the total area under the curve with
�E < 0 decreases. From (215) the dynamical equations immediately follow by defining a
Monte Carlo step as a collection of M elementary moves (each elementary move corresponds
to a global change of all oscillator coordinates as described in (213)). Because the average
change of energy �E is finite in an elementary move and the total energy (212) is extensive,
the number of moves M in a Monte Carlo step must be proportional to N. For simplicity, we
will take M = N . In the limit N → ∞, time becomes a continuous variable. This allows us
to write a closed equation for the energy E and acceptance rate A, i.e., the average number of
accepted moves in a Monte Carlo step,

∂E

∂t
=

∫ ∞

−∞
xP(x)W(x) dx (219)

∂A

∂t
=

∫ ∞

−∞
P(x)W(x) dx (220)

where P(x) is the probability distribution (215) and W(x) is the transition rate which
ensures that detailed balance is obeyed. For instance, according to the Metropolis rule
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W(x) = min[1, exp(−βx)] or in heat-bath W(x) = 1/[1 + exp(βx)]. At zero temperature the
transition rate rules W(x) converge to W(x) = θ(x). In this limit (219), (220) become

∂E

∂t
=

∫ 0

−∞
xP(x) dx (221)

A(t) =
∫ 0

−∞
P(x) dx. (222)

As shown in figure 12 the acceptance is given by the shaded area enclosed in the negative tail
of the distribution. At zero temperature, according to (215), both the mean and the width of
the Gaussian decrease as well as the shaded area in figure 12, implying a systematic decrease
of the acceptance rate.

We do not want to dwell here on all results one can learn by solving the dynamical
equations (221), (222) (see [108, 191]). Interestingly, in the OSC model the FDR (131) for
the magnetization M = ∑N

i=1 xi can be exactly computed at any temperature [191],

Teff(s) = 2E(s) +
1

f (s)

∂E(s)

∂s
(223)

and the QFDT is satisfied. At T = 0 in the large time limit one gets Teff(s) = 2E(s)

plus subleading corrections. This result shows that FD plots are straight lines starting at
C(s, s) = (2E(s)/K), χ(s, s) = 0 and finishing at C = 0, χ = 1/K . The relation between
the effective temperature and the dynamical energy is exactly the same as the equilibrium
relation given by the equipartition theorem. The aging system is in a quasi-stationary state
where relations between dynamical quantities are formally the same as in equilibrium. This
allows us to define a time-dependent configurational entropy Sc(E) through the relation (90),

1

Teff(E)
= ∂Sc(E)

∂E
Sc(t) = Sc(E(t)) = 1

2
ln(E(t)). (224)

Until now we have discussed some of the analytical results obtained by solving the
dynamical equations of the OSC model. However, an interesting question is the following:
can we determine the value of the effective temperature from the sole evolution of the energy
E without having to analyse correlations and responses in the framework of the QFDT as
described in (223)? Ideally, we would like to apply the ideas presented in section 4.2 to
identify the value of Teff solely from the off-equilibrium transition rates Z(F |F ′). In that
description dynamics proceeds by activated jumps over different states, whose dynamics is
described by the free-energy ME (79). What are the states in the reduced description of the
OSC model? As the energy landscape is a single parabolic well it appears that a reduced
description is not possible. The clue to this question is easy to understand if one realizes that
at zero temperature the acceptance of the dynamics goes to zero with time, therefore each
time a proposed elementary move is accepted we can effectively consider that the system has
jumped from one state to another, the typical time for this jump steadily growing with the time
elapsed since the system was quenched. In this view, each state corresponds to a configuration
and the reduced dynamics simplifies. Moreover, the free energy of the state is simply the
energy of the corresponding configuration. In the asymptotic regime (dE/dt)/E � 1, where
finite-size effects are not important, i.e. � � √

2E/K, the probability distribution describing
the energy change after the first jump is given by

P(�E) ∼ exp
(�E

4e

)
θ(−�E) (225)

where we used (215) and expanded it around �E = 0 up to linear order. Using relation (224)
we can recast (225) in the following form,
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P(�E) = 1

2Teff(E)
exp

(
�E

2Teff(E)

)
θ(−�E) (226)

showing that the statistics of energy jumps is an exponential with a width that directly depends
on the effective temperature. This result has two consequences: (1) it shows that the OSC
model is a microscopic version of the trap model proposed by Barrat and Mezard [173]; (2)
the effective temperature could be computed from the statistics of the first free-energy jumps
among components (here corresponding to configurations).

Before finishing, let us note that a number of variants of the oscillator model have been
considered, all sharing the feature that oscillators do not interact. For example, Nieuwenhuizen
and Leuzzi [108, 192–194] have considered a model with spin variables in addition to
oscillators. The new variables are discrete and used to mimic fast relaxational processes
not contained in the original formulation; aging, slow relaxation in these models, can still be
described in terms of entropy barriers.

6.5.2. The backgammon and urn models. Another instructive model where relaxation is
determined by entropic barriers is the backgammon (BG) model [195]. The model belongs to
a large class of models under the name of urn models where N particles or balls are distributed
among M urns or boxes. The BG model is defined by the energy function,

E = −
M∑

r=1

δnr ,0 = −Nempty (227)

where nr stand for the occupancies for each box and Nempty stands for the number of
empty boxes. The model has different versions [196] according to whether particles are
distinguishable (Maxwell–Boltzmann statistics) or not (Bose–Einstein statistics). The easiest
way to compute the thermodynamic properties of the BG model is by expressing the partition
function in terms of the occupancies nr rather than in terms of the set of boxes occupied
by the particles. In the Maxwell–Boltzmann case, thermodynamics needs to be corrected
by dividing the partition function by the usual N! term to avoid Gibbs’ paradox. In the
model with Bose–Einstein statistics this is not necessary. The dynamical rules of the BG
model directly depend on the type of statistics considered. In the Maxwell–Boltzmann case,
a departure box d is selected with a probability proportional to the occupancy nd of that box
and a new arrival box na is selected with uniform probability. The proposed move is given by
nd → nd − 1, na → na + 1 and accepted according to the standard Metropolis rule. Instead,
in the Bose–Einstein case, the proposed move and the transition rate are the same as for the
Maxwell–Boltzmann case but both the departure and the arrival box d and a are selected with
a uniform probability 1/M .

The resulting dynamics of the model is strongly dependent on the type of statistics
considered, the interesting one corresponding to the Maxwell–Boltzmann case which displays
a strong separation of timescales. In what follows, unless otherwise stated, we will concentrate
on the analysis of the model with M = N .

The thermodynamics of the model is exactly solvable and the entropy is given by
S(e) = log(1 + e) where e = E/N denotes the entropy per box (or per particle). To analyse
the dynamics from the perspective of the scenario described in section 4.2 we follow a similar
reasoning as we did for the OSC model. Let us consider a system quenched down to T = 0
and the aging regime reached in the asymptotic long-time regime where (dE/dt)/E � 1.
In that limit, the system has a number of empty boxes Nempty = −E and further decrease of
that number by one unit �E = −1 requires a time that grows exceedingly as E decreases
towards its minimum value E = −N + 1 (all particles condensed into a single box) [197, 198].
Therefore, as relaxation slows down, for a long time the system wanders through the constant
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energy surface by exchanging particles among occupied boxes. When a new box is emptied
the energy decreases by one unit. As we did in the OSC model, also in the T = 0 dynamics
of the BG model each component R corresponds to a single configuration with free energy
equal to the energy of that configuration.

The transition rate for going from a configuration of energy E to a configuration of energy
E − 1 is solely a function of the number of available configurations in the initial and final
states,

Zt(E − 1|E)

Zt(E|E)
= �(E − 1)

�(E)
(228)

where the rate frequency 1/t (E) associated with Zt (for its definition, see section 4.2) has
cancelled out from the numerator and denominator on the left-hand side of (228). As E is
extensive with N, and using (83), we obtain

Zt(E − 1|E)

Zt(E|E)
= exp

(
−∂S(E)

∂E

)
= exp

(
− 1

Teff(t)

)
. (229)

Equation (229) provides a way to estimate the effective temperature by looking at the number
of moves required for a move to decrease the energy by one unit. Inverting (229) yields

Teff(t) =
(

ln

[
Zt(E|E)

Zt(E − 1|E)

])−1

= 1

N∗(t)
. (230)

Therefore the ratio Zt(E|E)/Zt(E − 1|E) is simply given by the inverse of the number of
accepted moves N∗ required to decrease the energy by one unit. We stress that N∗ is not
the number of MC steps but rather the number of accepted elementary moves with �E = 0
required until a move with �E = −1 is found. This number N∗ is independent of the size of
the system. Note also that the rate of rejected moves (which gives the acceptance) does not
enter into the expression of the effective temperature but rather into the value of the typical
timescale t (E) associated with the jump. This is an essential ingredient required in any
‘quasi-equilibrium’ or microcanonical description of the relaxation. The value of the effective
temperature at a given time only depends on the number of accessible states with lower free
energy (energy in the present model) and not on the time necessary to escape from that state.
This expression is very amenable to numerical calculations.

Note that the energy levels in the BG model are discrete, therefore the relation (226) cannot
be applied. However, one can consider a non-degenerate disordered BG model where boxes
are assigned different energies [187]. In this case, the distribution P(�E) has been derived
and shown to have an exponential time-dependent behaviour characteristic of trap models.
However, the computation of the effective temperature in that model and the verification of
(226) have not yet been done.

The backgammon model as well as some of its variants have been solved by the technique
of the generating function [196,199–205]. A discussion of some of the main results and
analytical techniques has been presented in [15]. The origin of the effective temperature as
derived from the QFDT remains as yet not completely understood. No neutral observable
has yet been identified in the BG model. Although all studied observables show that
the QFDT (94) is verified in a one-timescale scenario, there seem to be different effective
temperatures depending upon the observable considered [202, 204, 206]. On the other hand,
none of the different effective temperatures associated with these observables appear to be
linked to the effective temperature obtained within the adiabatic approximation [199]. An
interesting variant of the urn model is the zeta-urn model introduced in the context of quantum
gravity that shows a finite-temperature Bose–Einstein condensation transition [207, 208], see
section 6.6.
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6.6. Ferromagnetic models at criticality

A new emerging line of research related to the mainstream of research on FDT violations in
glassy systems, is the study of FDT violations at critical points. At critical points the relaxation
time diverges and one can investigate, for instance through field-theoretical methods, the time
dependence of correlations, responses and the resulting FDR (91) in the asymptotic regime
s → ∞. These types of investigations are no different from those undertaken in the study
of coarsening behaviour in ordered phases. The main difference between the slow dynamics
at a critical point and coarsening is that, in the former case, critical slowing down is at
the origin of the slow dynamics. Interfaces have no stiffness tension and their motion is
subdiffusive (or diffusive) and only a consequence of the curvature of the interface. Growing
domains are not islands of up or down spins but regions of spatially and temporally correlated
spins of zero net magnetization. At Tc the dynamics is described by the renormalization-
group dynamical equations of the corresponding finite-temperature fixed point. However, in
coarsening systems below Tc activated processes are important and interfaces have non-zero
tension as they separate domains of up and down spins. Competition between the curvature of
the surface and its tension leads to different growth laws, described by the zero-temperature
fixed point. Because the origin of slow dynamics at Tc is different from that in standard glassy
systems, the main ansatz (91) may not hold. Indeed, many studies of the FDR at criticality
reveal that X(t, s) is not a single function of the correlation C(t, s).

One among the first studies of ferromagnetic models at criticality is the Ising chain solved
by Glauber in 1963 [209]. Strictly speaking, the dynamics of this model is that of a coarsening
model as the system orders at the critical point T = 0 where the magnetization discontinuously
jumps from 0 (for T > 0) to 1 (at T = 0), i.e. the critical exponent β vanishes. We will see
below that the ferromagnetic Ising chain has some peculiar properties. Starting from a random
initial configuration the coarsening dynamics at T = 0 has long been studied in [210] and
revisited in [211]. In the asymptotic long-time limit, the aging part of the two-times correlation
functions scales like Cag(t, s) ∼ F(L(t)/L(s)) (252) with L(t) ∼ t1/2 corresponding to a
diffusive process of the interfaces (see section 7.3). More recently, and nearly at the same
time, the FDR has been analytically computed [212, 182] for a random staggered perturbation
finding X(C) = 1/[2 − sin2(πC/2)] in agreement with the ansatz (91); or, in terms of times,
X(t, s) = 1

2 (1 + s/t) showing that X → 1/2 if t → ∞ or C → 0. This last result coincides
with that found in the random walk or in the Gaussian model [170], all models characterized
by diffusive dynamics. This has led to the proposal [205, 213] that, in systems at criticality,
the limiting value X(t, s) for t → ∞ is a universal quantity,

X∞ = lim
s→∞ lim

t→∞ X(t, s). (231)

This conclusion has been substantiated by the exact solution of the ferromagnetic spherical
model in general d dimensions [205, 213]. The authors have noted how X∞ is only a function
of amplitude ratios describing the leading scaling behaviour of correlations and responses.
This conclusion is endorsed by the following result: X∞ = 1/2 for d > ducd = 4 and
X∞ = 1 − 2/d for 2 < d < ducd = 4 where ducd stands for the upper critical dimension
(below d = 2 there is no finite T transition in the model). Interestingly, for d = 2 the
FDTR X(C) has a non-trivial form [214], similar to what is found for the ferromagnetic
Ising chain. Numerical results in the Ising model show that X∞ � 0.26 in two dimensions11

and preliminary results in three dimensions give X∞ � 0.4. In figure 13 we show the IRF
corresponding to the TRM susceptibility (98) as a function of C in the 2D Ising model at the

11 After completion of this review we learned of recent results finding a slightly different value X∞ � 0.34 in two
dimensions [215]. More work is necessary to accurately estimate that number.
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Figure 13. IRF (98) corresponding to the thermoremanent magnetization in the 2D Ising model
at criticality. The full and broken lines correspond to the quasi-stationary regimes X = 1 and
X∞ = 0.26 respectively. From [205].

critical point. The general scenario about ferromagnetic models at criticality is as follows
[213]. Let us consider a system that is quenched from a random configuration to a temperature
below Tc. If τ = t − s � s the system is in equilibrium, TTI holds and FDT is not violated
(X(t, s) = 1). However, if t/s ∼ O(1) the system ages, and both TTI and FDT are violated.
A solution for the correlation Cag(t, s) and response Rag(t, s) that matches the intermediate
regime between the stationary X = 1 and the aging regimes is given by

Cag(t, s) = m2
eqĈ

(
t

s

)
Rag(t, s) = s−a−1R̂

(
t

s

)
(232)

where a > 0 is a coarsening exponent. From (232) X(t, s) ∼ s−a
/
m2

eq, therefore X → 0 for
coarsening systems where meq is finite. The same expression is valid for the critical point but
replacing meq by its time dependence at Tc. Using meq ∼ (Tc − T )β, ξ ∼ (Tc − T )−ν, t ∼ ξz

where β, ν, zc are the correlation length and dynamical exponents respectively. Substituting
these relations into (232) and using ac = 2β/zcν gives at Tc

Cag(t, s) = s−ac Ĉ

(
t

s

)
Rag(t, s) = s−ac−1R̂

(
t

s

)
(233)

leading to X(t, s) = X̂(t/s). This result has two consequences: (1) for t → ∞,X(t, s) →
X∞ and (2) only for ac = 0, according to the left expression in (233), can X(t, s) be expressed
as solely a function of Cag. This is the case of the aforementioned Ising chain where the ansatz
(91) is valid because β = 0. It has been suggested [216] that Rag(t, s) covariantly scales under
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conformal transformations of time leading to specific predictions for the scaling function R̂.
An important implication of the result ac = 0 is that the aging part of the IRF (97) does not
vanish in the asymptotic long-time limit. As noted in [217] the non-vanishing of the aging part
of IRF in the large s limit is related to the failure of the scheme that links static and dynamical
properties [160, 161] in the Ising chain. In fact, as discussed in section 6.2.2 the stochastic
stability property links the equilibrium P(q) with the behaviour of IRF,

P(q) = −T
d2χ(C)

dC2

∣∣∣∣
C=q

= dX(C)

dC

∣∣∣∣
C=q

(234)

where we have used (100). In the Ising chain P(q) = δ(q − 1). Equation (234) is not fulfilled
in the Ising chain as can be easily checked by inserting the result X(C) = 1/(2− sin2(πC/2))

(discussed in the paragraph preceding (231). As soon as Tc is finite (d > 1), X(C) =
θ
(
C − m2

eq

)
for T < Tc and (234) is again satisfied. Despite its simplicity, the Ising chain

appears to be an interesting solvable example that allows us to check many results. For instance,
observable independence has also been recently addressed [55] showing that X∞ = 0 for a
large class of observables. Recent progress in the study of the FDR at criticality has been
achieved by Calabrese and Gambassi [218, 219] who have considered the FDR in momentum
space X�q(t, s). The study of O(N) models using field-theoretical techniques yields estimates
for the value of X∞ (231) in an ε = 4 − d expansion. Two-loop computations [219] give,
for the Ising case N = 1, the following values: X∞ (3D) = 0.429(6),X∞ (2D) = 0.30(5)

compatible with the results obtained from numerical simulations [205, 215].
Other studies of models at criticality include the XY model with a Kosterlitz–Thouless

transition [220]. This model has a low-temperature phase where correlation functions decay
algebraically, therefore correlations are critical below Tc. A failure of the stochastic stability
property, similar to that reported in the Ising chain, appears in the 2D XY model at low
temperatures where the density of vortices increases.

Finally, let us comment on results for zeta-urn models that have confirmed the validity of
the relation (231) [15, 207, 208]. Zeta-urn models show a quite rich phase diagram described
in terms of the density ρ of balls (i.e. the number of balls divided by the number of boxes)
and the temperature. There is a critical line ρc(β) that separates a fluid regime (ρ < ρc(β))

from a condensed regime (ρ > ρc(β)) with glassy dynamics. Along the so-called regular
part of the critical line (β > 3) X∞ = β+1

β+2 is temperature dependent. This number lies in the
interval [4/5, 1] quite far from the values X∞ < 1/2 found in ferromagnets. In the condensed
phase X∞ → T 1/2 at low temperatures. It vanishes at T = 0 as in coarsening systems,
however the condensation dynamics in urn models is totally inhomogeneous in contrast to the
homogeneous character of coarsening in ferromagnets.

7. QFDT: the numerical evidence

Computer simulations have the great advantage, over the real experiment, of direct access
to the microscopic level, even if only relatively small timescales and system sizes can be
studied. Although this can be a serious limitations, the true fact is that numerical study of
aging phenomena and FDT violations has been successfully done during the last years for
several systems.

7.1. Structural glasses

Using ideas developed in the field of spin glasses, many conjectures have been formulated
concerning the structure of the phase space of glassy systems. However, obtaining direct
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information, either from experiments or from numerical simulations, is a difficult challenge.
Relaxation times in a glass are so long as to preclude equilibration within experimental
times. Numerical or experimental exploration of the phase space in these systems is therefore
necessarily incomplete. The increase in computational power and the recent developments
in the theory of disordered systems has pushed forward an approach which should not suffer
from these limitations. The idea, which was actively developed in the study of spin glasses,
is that relevant information on the phase space structure should be hard-encoded into the
non-equilibrium dynamics of glassy systems.

According to the conjecture of the similarity between structural glasses and some spin-
glass models, X(C) for structural glasses is a two-valued function with X(C) = 1 at short
times, and X(C) = m < 1 in the long-time aging regime. This scenario has been largely
studied using numerical simulations.

In a numerical investigation of aging effects not only the waiting time must be changed
over several orders of magnitude, but for a given waiting time the subsequent dynamics must
also be studied over a long time. For these reasons, aging phenomena have been studied for
models that are simple enough to be simulated over long times, but at the same time still catch
the essential features of real glasses. Moreover, to maintain the systems in a non-equilibrium
state for very long times, crystallization must be strongly inhibited. This is obtained either
with a particular choice of interaction potential parameters or by adding a (small) extra term
in the potential. In the following we discuss results obtained for several models.

7.1.1. Mixtures of soft particles of different sizes. See [221–226]. This system consists of N
particles half of which are of type A and half of type B interacting via the Hamiltonian

H =
∑
i<j

(
ri + rj

|xi − xj |
)12

(235)

where the radius ri depends on the type of particle. It is known that the choice of two different
types of radius such that rB/rA = 1.2 prevents crystallization and the system can be brought
into a glassy state.

Due to the simple scaling of the potential, the thermodynamic quantities depend only on
� = ρβ4, where ρ is the density which can be taken equal to 1. This model presents a glass
transition at about �c = 1.45 [222]. In figure 14 we report the response of the particle to a
force of strength ε

χ(tw + τ, tw) � 1

Nε

N∑
i=1

〈fi · xi(tw + τ )〉 (236)

where fi is a random Gaussian vector of squared length equal to the space dimension d, versus
the self-diffusion function

�(tw + τ, tw) = 1

N

N∑
i=1

〈|xi(tw + τ ) − xi(tw)|2〉. (237)

The average is over different initial states at tw and realization of f . Two linear regions with
different slopes, one with X(C) = 1 and one with X(C) = m < 1, are clearly seen, in
agreement with the two-timescale scenario. The dependence of m with T is well fitted by the
spin-glass model prediction m(T ) = T/Tc, see figure 15. Similar results have been obtained
in monoatomic Lennard-Jones glasses [227, 228], see section 7.1.3.
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Figure 14. χ versus β� at � = 1.6 for tw = tw = 8192 and tw = 2048. From [225].
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line is the prediction of the approximation m(T ) = T /Tc. From [225].

7.1.2. Lennard-Jones binary mixtures. See [229–232]. The system consists of a mixture of
particles of types A and B of equal mass m interacting via a 12–6 Lennard-Jones potential of
the form

Vαβ(r) = 4εαβ

[(σαβ

r

)12
−

(σαβ

r

)6
]

(238)

where εαβ and σαβ depend on the particle pair type and are chosen to prevent crystallization. For

a 80 : 20 mixture, and using εAA and σAA as units of energy and length and
(
mσ 2

AA

/
48εAA

)1/2

as the unit of time, these are εAA = 1, σAA = 1, εAB = 1.5, σAB = 0.8, εBB = 0.5 and
σBB = 0.88. The atomic dynamics of this model is well described by the mode-coupling
theory with a critical temperature of Tc = 0.435 in reduced units.

Typical FD plots numerically obtained by Barrat and Kob [233–235] are shown in
figure 16. The correlation is given by the incoherent scattering function for a wave vector k

Ck(tw + τ, tw) = 1

N

∑
j

eik · [rj (tw+τ)−rj (tw)] (239)
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Figure 16. Parametric plot of the integrated response function M(tw + τ, tw) and the correlation
function C(tw + τ, tw) for k = 7.25. Final quench temperature Tf = 0.3, tw = 1000. Circles:
tw = 10 000. The straight lines have slopes −1.0 and −0.45. From [234].

while the response is measured by adding to the potential a term of the form

δV = V0

∑
j

εj cos(k · rj ) (240)

where εj = ±1 with equal probability and V0 < T . Again a two-timescale scenario is clearly
seen. Moreover, the effective temperature in the slow regime where m < 1 is in reasonable
agreement with the glass transition temperature Tg of the system12.

Thus the FDT is broken as the system fails to equilibrate, as expected from spin-glass
models.

7.1.3. Monoatomic Lennard-Jones systems. See [227, 228, 236, 237]. The system consists
of equal particles interacting via the potential V = VLJ + δV , where VLJ is the usual 12−6
Lennard-Jones potential (expressed in reduced units), and δV is a many-body term that inhibits
crystallization:

δV = α

2

∑
q

θ(S(q) − S0)(S(q) − S0)
2 (241)

where S(q) is the static structure function, α = 0.8 and S0 = 1. The sum is made over all q

with qmax − � < |q| < qmax + �, where qmax = 7.12ρ1/3 and � = 0.34, ρ being the particle
density.

In figure 17 we report the parametric plot of the mean-square displacement � and IRF in a
crunch experiment. It is important to note that the temperature below which m < 1 coincides
with the glass transition temperature of the system at the density reached after the crunch.
This shows that the breaking of FDT does not depend on the initial state nor on the path
followed in the (T , ρ) plane, but only on the final (non-equilibrium) state to which the system
is brought.

The FD plots for glass forming liquids discussed here reveal the typical two-timescale
(or 1RSB) scenario found in some spin-glass models. This supports the original Goldstein’s
idea [56] that the phase space of supercooled liquids is divided by high barriers into different

12 The glass transition Tg is defined as the temperature below which the system fails to equilibrate on the experimental
timescale. For structural glasses Tg is defined as the temperature at which the viscosity is equal to 1013 Poise or,
equivalently, a relaxation time of several minutes.
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Figure 17. Mean-square displacement � and integrated response function 2R/β in reduced units
at ρ∗

2 = 1.24 for three temperatures T ∗ = 0.48, 0.96, 1.76. The left side shows the log time
dependence of the two quantities. On the right side is response function versus �. Dashed lines
indicate equilibrium FDT, while full lines fit the off-equilibrium aging region. From [227].

valleys each with its own statistical properties. This picture has been recently confirmed by a
direct analysis of the motion of a glass forming liquid in terms of IS [62].

In the right panel of figure 18 [238] we show the temporal behaviour of the average
energy of minima for a binary mixture Lennard-Jones system visited in the non-equilibrium
motion following a quench to a low temperature. As a consequence, when the system is
quenched from a high-temperature state to temperature T, the fast intra-component degrees of
freedom will quickly equilibrate with the thermal bath temperature T. Applying the condition
of minimum free energy to the system, constrained to stay in components of depth EIS, allows
us to define an effective temperature

Teff(EIS, T ) = (∂/∂EIS)Fv(T ,EIS)

(∂/∂EIS)Sc(EIS)
(242)

which reflects the non-equilibrium net heat flow from the system to the thermal bath [100].
This expression coincides with that proposed in [46] in the context of p-spin models, once the
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Figure 18. Left: solutions of (242) for several values of the final quench temperature Tf for the
BMLJ system. Right: eIS as a function of time, following the temperature quench. The arrows
show graphically the procedure which connects the eIS(t) value to the Teff value, once Tf is known.
(Data courtesy of Sciortino and Tartaglia, see also [238]). From [36].
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components are identified with the Thouless–Andreson–Palmer states [71, 73], see also the
discussion after (90). Inserting into (242) the value of EIS as a function of time one finally
gets the function Teff(t). The definition of Teff is shown graphically in figure 18 [238].

The two-timescale scenario is rather well confirmed by numerical results, as shown in the
FD plots of figure 19 [238], where the FD plot for the binary mixture Lennard-Jones system
is reported. The full lines are the prediction from (242), the agreement is rather good.
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7.1.4. Finite-size mean-field glasses. See [36, 65–67]. We have seen in the previous
sections that the essential features of MCT for glass forming systems are also common to
some fully connected spin-glass models, called mean-field p-spin glasses with p > 2. In the
thermodynamic limit, the high-temperature paramagnetic phase is described by the schematic
mode MCT for supercooled liquids. At the critical temperature Tc an ergodic to non-ergodic
transition takes place. In mean-field models the relaxation time diverges at Tc as barriers
separating different ergodic components become proportional to the system size, thereby
diverging in the thermodynamic limit. In real systems, or the glass models just described, the
barriers are of finite height and the transition to a glassy state appears at the glass transition
temperature Tg < Tc, where the typical activation time over barriers is of the same order as
the observation time.

Despite these differences mean-field models, having the clear advantage of being
analytically tractable, are a very useful tool to study the phase space structure of glassy
systems, especially between the dynamical temperature Tc and the static temperature TRSB

(Kauzmann temperature TK in glass language). The main drawback is that, since activated
processes are not captured by mean-field models, the picture that emerges is not complete. To
go beyond the mean field it is necessary to include activated processes, a very difficult task
since it implies knowledge of the excitations involved in the dynamics. A simple approach
is to include finite-size effects in the dynamics of an infinite mean-field system just extending
the analysis to finite-size mean-field. This approach has been suggested by Nieuwenhuizen
[49] and is somehow reminiscent of the dynamical approach of Sompolinsky [141], see also
section 6.2.2. We stress that the assumption that finite-size mean-field models capture the
physics of glasses beyond MCT is not trivial. In fact, the activated process in finite-
size mean-field models could be different from those of supercooled liquids, making the
behaviour different. This, for example, seems to be the case for the Potts glass model, where
recent studies on a finite-size version indicate some differences with the fragile-glass scenario
[239, 240].

A spin-glass model in the p-spin universality class, that displays fragile-glass behaviour,
is the random orthogonal model (ROM) [74, 241]. The model is defined by the Hamiltonian13

H = −2
∑
ij

Jijσiσj (243)

where σi are N Ising spin variables (σ = ±1) and Jij is a random N ×N symmetric orthogonal
matrix with zero diagonal elements. We note that, differing from previously discussed spin
models, the condition of orthogonality leads to a strong correlation among the matrix elements.
In the limit N → ∞ this model has the same thermodynamic properties as the p-spin model.
The dynamical transition is at Tc = 0.536 with threshold energy per spin eth = −1.87. A
static transition occurs at TRSB = 0.256 and the critical energy per spin is e1RSB = −1.936
where the complexity vanishes [74, 241]. The analysis in the mean-field limit gives a rather
clear ‘geometrical’ interpretation of the two transitions. The phase space is composed of an
exponentially large (in N ) number of components, separated by infinitely large (for N → ∞)
barriers. Each component is labelled by the energy density e of its minimum and the largest
allowable value of e is eth [76, 242]. Components with e equal to eth have the largest
(exponentially with N ) statistical weight and become dominant, in a thermodynamic sense, at
the dynamical transition T = Tc. Since components with e smaller than e1RSB have negligible

13 The factor 2 in (243) is set only for convenience to match the values of all relevant temperatures with those reported
in the original paper [241]. The Hamiltonian studied in [74] differs by a factor 4 from the present definition. To
compare the results discussed here with those in [74] temperatures and energies must be properly scaled by a factor 4.
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Figure 20. (a) Equilibrium average eIS as a function of temperature. The arrows indicate the
construction of the effective temperature Teff (eIS). (b) Average inherent structure energy for
the ROM as a function of time for initial equilibrium temperatures Ti = 3.0 and final quench
temperatures Tf = 0.1, 0.2, 0.3 and 0.4. The average is over 300 initial configurations. The
system size is N = 300. The lines denote the two regimes; see also [66]. From [36].

statistical weight [73, 74], the static transition is ruled by components with e = e1RSB, i.e., the
lowest accessible ones [42, 73].

For finite N the scenario is different since not only basins with e < eth acquire statistical
weight, but basins with e > eth with few negative directions [76] may become stable, simply
because for finite N there are not enough degrees of freedom to hit them. The ROM for finite
N has been largely studied during the last few years [36, 65–67, 243] and its behaviour has
been compared with that of supercooled liquids finding a remarkable agreement.

In the left panel of figure 20 is shown the average energy minima of basins (IS) as a
function of temperature for the ROM with N = 300 obtained from a Monte Carlo simulation.
It can be shown [60, 61] that if the density of states �(E) is Gaussian and if the basins have
approximately the same shape or are, to a good degree, harmonic, then the IS energy density
eIS ∝ 1/T . The data in the figure can be well fitted by

eIS = e∞ + e1T
−1 + O(T −2) (244)

indicating that for a relatively large energy range the basins are roughly of the same shape.
This means that the contribution fv(T , eIS) to the free-energy density of the system is of
the form fv(T , eIS) = eIS + δfv(T ), with the second term independent of eIS, i.e., of the
component [65]. This in turn implies that the effective temperature for the ROM is completely
determined once the complexity (density) sc(e) is known [66]. Indeed from (90), (242) we
have

1

Teff(eIS)
= ∂sc(eIS)

∂eIS
. (245)

Furthermore, in an aging experiment Teff depends on time only through eIS(t). For each time
t the effective temperature Teff can be obtained graphically as shown in figure 20. The left
panel in that figure shows the average eIS energy as a function of time in a typical aging
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experiment. We note the two-regime decay also observed in supercooled liquids [244]. The
two regimes are associated with different relaxation processes. In the first part the system
has enough energy and relaxation is mainly due to path search out of basins through saddles
of energy lower than T, where T is the temperature after the quench. This part depends only
on the temperature of the equilibrium state from which the system has been quenched. This
process stops when all barrier heights become of O(T ) and relaxation slows down since it must
proceed via activated inter component processes. In figure 21 is shown the response versus
correlation plot for the ROM. Correlations and responses were computed by projecting over
the IS, the corresponding FDT also holds in equilibrium as discussed in section 3.3. The figure
clearly shows the two-timescale scenario with X = 1 at short times and X = T/Teff < 1 at
later times, with Teff in very good agreement with the value predicted by (242). Also notorious
is the fact that the effective temperature shifts with time as expected.

7.2. Spin glasses and other random systems

As we have explained in section 6, spin glasses represent the most important motif of many
results regarding FDT violations. Particularly, numerical simulations have been the most
widespread tools to investigate many aspects of the equilibrium behaviour of spin glasses that
cannot be tackled by analytic means (for a review see [245]). It is usually said that the advantage
that numerical simulations offer in the study of non-equilibrium properties, as compared to
equilibrium ones, relies on the fact that systems do not need to be equilibrated. However, this
observation is naive and deceitful as many dynamical aspects cannot be observed in the range
of accessible timescales. Indeed, it is widely believed that many dynamical results in spin
glasses are suspect because the asymptotic dynamical regime, defined as that regime where
the dynamic correlation length ξ is many lattice spacings, is usually not reached. Establishing
whether the range of simulated timescales reaches the asymptotic long-time regime is at
the heart of a present controversy in the field. Indeed, not by chance, this controversy
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Figure 22. Zero-field cooled IRF χZFC(t, tw) = MZFC(t, tw)/h = χdc − χFC(t, tw) (empty
circles) in the 3D EA model plotted as a function of the time t ≡ τ for different values of tw at
T = 0.7. For times t ≡ τ > tw deviations from the FD relation χZFC(t, tw) = β(1 − C(t, tw))

(full circles) are noticeable. From [247].

is quite reminiscent of another parallel ongoing discussion concerning the magnitude of
finite-size effects in the equilibrium properties. Stochastic stability arguments linking non-
equilibrium with static properties [160, 161] confirm that any strong finite-size corrections to
the equilibrium properties should manifest as strong finite timescale corrections in dynamical
experiments. Unfortunately, a precise theory that quantifies (even in an approximate way)
these corrections is presently unknown. We will not deal here with the difficult issue of
ascertaining in which cases simulations do reach the asymptotic time regime, but present the
evidence on FDT violations for the accessible simulated timescales.

7.2.1. Spin glasses. We begin our tour by reporting the first numerical evidence of FDT
violations in three-dimensional (3D) Edward–Anderson (EA) spin glasses [246] and their
representation in the form of FD plots [247]. In [246] it was shown that deviations from the
equilibrium FDT appear at timescales comparable or larger than the age of the system. In
figure 22 we show TRM measurements by Franz and Rieger [247] on the 3D EA model. In
those measurements the system starts from a random initial configuration and a magnetic field
h is applied for time tw . The field is cut off at tw and the subsequent decay of the MTRM(t, tw)



R256 Topical Review

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1

tw=105 h0=0.1
tw=104 h0=0.05

Figure 23. S(C) versus C in the 3D EA model at T = 0.7 < Tc � 1 for L = 64. The continuous
line is the prediction obtained from equilibrium data for L = 16 (averaged over 900 samples) as
explained in the text. The straight line is the FDT prediction. From [249].

recorded. In the linear response regime this experiment is equivalent [248] to a ZFC set-up
where the field is initially zero and switched on at tw , the resulting MZFC(t, tw) being given by
MTRM(t, tw) + MZFC(t, tw) = MFC for t large enough (see (99)) where MFC is the equilibrium
magnetization. Most of the numerical simulations use the ZFC procedure. The most extensive
simulations and the most clarifying FD plots, as described in section 4.3, have been done in
d = 3 and d = 4 [249–253]. In those papers, the authors consider the IRF associated with the
global and the spin–spin autocorrelation functions as described in section 4.3. The system is
quenched at low temperatures for a time tw and a small magnetic field is subsequently applied
and the M(t) measured. Typical FD plots in the 3D EA model using this construction are
shown in figure 23. There we show S(C) at two different magnetic field intensities as well as
two different waiting times. FD plots reveal that a constant slope X(C) for C < qEA is a good
approximation to the data (although more accurate data in four dimensions hint at the existence
of a curvature in S(C) [251, 250]). This constancy of the slope X(C) (i.e. the linearity of S(C)

in the region where FDT is violated) can also be interpreted as complementary evidence of the
accuracy of the t/tw scaling in the correlation function [254]. Stochastic stability arguments
[160, 161] state that the dynamical X(C) is related to the static function x(q) by the relation
P(q) = x ′(q) or

x(q) =
∫ q

0
dq ′P(q ′) (246)

where P(q) is the probability distribution of overlaps between replicas of the same system.
This identity offers a way to obtain S(C) from equilibrium data. The derivative of relation
(101) with respect to C yields P(C) = −d2S(C)/dC2. Inverting this identity and inserting
an estimate of P(C) as obtained from equilibrium simulations allows an alternative way to
compute S(C). The applicability of this method is shown in figure 23. Quantitative evidence
of the mean-field character of the FDT violations has also been reported by checking the
accuracy of the Parisi–Toulouse approximation in spin glasses (this approximation states that
the order parameter function q(x) is a function of the argument x/T , see [255, 256] for an
exposition). Within this approximation (which works pretty well in MF spin glasses) it can
be shown [249, 253] that χ(t, tw) ≡ χ(C) = βS(C) is independent of temperature in the
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B � 0.41. From [253].

region C < qEA where FDT is violated. In the SK model it can be proved that this function
χ(C) � √

(1 − C). In general, for any short-range system one can assume the following
behaviour: (a) χ(C) = β(1 − C) for C > qEA when FDT holds and (b) χ(C) = A(1 − C)B

for C < qEA. Multiplying χ(C) by T 1−φ with φ = 1/(1 − B) one finds that the resulting
quantity is solely a function of the argument (1 − C)T −φ : T 1−φχ(C) = χ̂((1 − C)T −φ)

thereby showing that data for different waiting times and temperatures should collapse on a
single master curve. In both d = 3, 4 a best collapse is obtained taking B = 0.41 [249, 253]
which is quite close to the mean-field result B = 1/2, see figure 24.

Apart from the EA model many other results have been obtained studying short-range
versions of the disordered p-spin model. Two different models have been considered. On
the one hand, there is the so-called disordered plaquette model [257] where spins occupy the
vertexes of a finite-dimensional lattice and the interaction occurs between p spins belonging
to a given plaquette. The Hamiltonian of this model reads

H = −
∑
�

J�
∏
i∈�

σi (247)

where ‘�’ denotes a plaquette (not necessarily a square plaquette) that connects different
spins. As usual, J� are quenched variables of zero mean and finite variance and σi = ±1
denote Ising variables. The simplest case, the one considered in [257], is a disordered version
of the p = 4 model and consists of a regular lattice of side L and dimension D where spins
occupy the vertices and plaquettes correspond to the different faces of the lattice. Each face
contains four spins and each spin belongs to 4

(
D

2

)
plaquettes. A schematic picture of the

lattice in d = 2 is shown in figure 25. The study of the static and dynamic properties of this
model revealed that, although there was no compelling evidence in favour of a finite T spin-
glass transition, the relaxation time shows superactivation effects and stretching of correlation
functions characteristic of fragile glasses. The relaxation time can be fitted both to a VTF law
with T0 = 0.65 or to an exponential inverse temperature squared law with T0 = 0. The study
of the equilibrium properties confirmed both possible scenarios (Tc ∼ T0 = 0.65 or Tc � 0)
but show that, whatever scenario holds, the relaxation time τ and the equilibrium correlation
length ξ are linked by the relation τ = A exp(Bξ/T ), supporting a scenario of cooperative
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Figure 25. Schematic figure of the disordered plaquette model in d = 2.

Figure 26. FD plot for the disordered plaquette model (with p = 4) in a cubic lattice of lattice
size L = 20 at T = 0.7 and three different waiting time values. From [257].

dynamics. Also, the trap-like character of the dynamics was confirmed by studying the
overlap among identical replicas at tw but evolving with different noises, Q(tw, tw + t). This
quantity should coincide with C(tw, tw + 2t) if jumps among configurations are uncorrelated
or entropically driven. Numerical results are compatible with this prediction. Accordingly,
the FD plot (figure 26) measured at T = 0.7 ( just above the suspected finite Tc) showed strong
deviations from the equilibrium line χ = β(1 − C) with a FDR x ∼ 0.4, and in agreement
with the one-step pattern characteristic of structural glasses (see section 7.1).

On the other hand, there is another short-range version of the p-spin model [152, 258–261]
where M spins

(
s1
i , . . . , s

M
i

)
occupy the different sites i of a cubic lattice. For each two adjacent

sites i and j one considers all possible groupings of different p spins that can be formed by
taking k spins from site i and p − k spins from site j . In an obvious abuse of notation, we can
write

H = −
∑
(i,j)

∑
g∈(i,j)

Jg

∏
k∈g

σk (248)

where the sum runs over all possible nearest neighbours (i, j) and all different groups of p
spins as described above. Again, the J are quenched variables with zero mean and finite
variance. Two cases have been considered: M = 2, p = 3 [258, 261] and M = 3, 4, p = 4
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Figure 27. FD plot for the short-range version of the p-spin model (with p = 4,M = 3) in a
cubic lattice of lattice size L = 16 at T = 2.0 = 0.77Tc and tw = 217. The continuous line with
error bars is the shape of X(C) derived by numerical integration of the relation P (q) = x′(q) and
measuring the equilibrium P (q) for L = 5, the dotted line is the equilibrium line S(C) = 1 − C

and the isolated cross at C = 0 corresponds to the FC magnetization. From [260].

[259, 260] (for M = 2, p = 4 the model reduces to the standard EA model [259]). In the
first case, the model is not time-reversal invariant while in the second case it is. FD violations
have been measured in this last case [260]. Finite-size scaling studies of the model show
some evidence of a second order phase transition at Tc = 2.6 characterized by a divergent
spin-glass susceptibility. This result is confirmed by a study of the FDT violations in this
model that show the existence of a non-trivial X(C) characteristic of a full RSB scenario.
As for the EA model, the X(C) appears to be linked to the static P(q) via the relation
P(q) = X′(q), see figure 27. The main message conveyed by most of these results is that
FDT violations are qualitatively and quantitatively well described in the framework of MF
theories of spin glasses. However, the implications of these similarities must not be taken too
far. In particular, the already old but recurrent issue about the validity of the many state picture
in finite-dimensional spin glasses cannot be answered from such a point of view. As discussed
previously, the precise link between statics and dynamics proposed by stochastic stability
arguments confirms that the dynamic X(C) is related to the static x(q) after introducing a
coherence length l(tw) (related to the spin-glass correlation length ξ(tw) obtained from the
two-point replica correlation function) which depends on the waiting time tw according to
the relation x(q, l(tw)) = X(C(t, tw)). A numerical study of FDT violations in d = 2 [262]
shows that such an assumption is indeed true and l(tw) ∝ ξ(tw). More important, the resulting
FD plots are extremely similar to those found in d = 3, 4 and the scaling ansatz for S(C),
as derived from the assumption that the low T phase has many states, also works pretty well.
However, as in d = 2 there is no finite T transition these results show that statements in
favour of the validity (or not) of the mean-field picture in the accessible range of timescales (in
off-equilibrium experiments) or sizes (in equilibrium measurements) are inconclusive. The
stochastic stability property is well satisfied also in the XY model at not too low temperatures
[220] where critical fluctuations dominate, the overall resulting behaviour being quite similar
to that of the 3D EA model. From a completely different perspective, the overall presence of
mean-field aspects in the analysis of off-equilibrium data suggests that the many-state picture
is effectively valid and that only for experimentally inaccessible sizes or timescales (therefore
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irrelevant from a practical point of view) is the true scenario (whether mean-field or droplet)
recovered.

We finish this subsection by commenting on some recent results [263] aiming to identify
and quantify the low-energy fluctuations that locally result in deviations from the average
QFDT as measured in the bulk. Local deviations from the bulk QFDT curve χ(C) are the
equivalent of fluctuations from the average magnetization in a Heisenberg magnet, where
transverse fluctuations correspond to low-energy spin-wave excitations and the longitudinal
fluctuations that modify the length of the magnetization vector are the massive ones. Numerical
results in the 3D EA model show that local correlations Cl(t, tw) and IRFs χl(t, tw) measured
over local boxes spread over the whole lattice generate a two-dimensional surface ρ(Cl, χl)

with a prominent maximum centred around the bulk curve. The contour lines of this density
map gently deform along the QFDT bulk curve χ(C) and deviations far away from that curve
appear to be penalized. This study offers the possibility of understanding the connections
between the mean-field character of the FDT violations and the existence of deviations due to
short-scale cooperative processes in an eventual (but yet unclear) heterogeneous scenario.

7.2.2. Other random systems. Apart from spin glasses other lattice models with quenched
randomness have been considered in the literature aiming to elucidate whether off-equilibrium
studies can tell something about the character of the low-temperature phase. Many of the
conclusions of these numerical studies need to be taken cautiously as no conclusive evidence
in support of a given scenario or in refusal of other ones is ever reached.

Let us start the discussion with the ferromagnetic diluted and random field Ising models
(RFIMs). The 3D version of both models has been investigated in [250]. Simulations
in the low T phase and in the Griffiths phase (i.e. the region of temperatures between the
critical temperature of the pure system and that of the random system) show that FD plots in
ferromagnetic diluted and RFIMs are very similar to each other but quite different to those
measured in spin-glass systems (see the preceding section 7.2.1). The former are characteristic
of a ferromagnetic phase with X = 0 while the latter are described by a non-trivial function
X(C). These studies exclude the possibility of a spin-glass and Griffiths phase in both models
described by mean-field like RSB solutions.

Another finite-dimensional model with interesting behaviour is the frustrated Ising lattice
gas (FILG) [264] defined by the Hamiltonian,

βH = −J
∑
〈i,j〉

(εijσiσj − 1)ninj − µ

V∑
i=1

ni (249)

where the σi = ±1 are Ising spins and ni = 0, 1 are occupancies which may take the value 1
or 0 depending whether site i is occupied by a spin or not. The sum is over near neighbours
on a d-dimensional lattice. The εi are quenched random variables that may take the values
±1 and µ stands for a chemical potential. The average particle density ρ = 1

V

∑
i ni is

a monotonically increasing function of µ. In the limit J → ∞ the model converges to
the site frustrated percolation problem [264] (a variant of the standard percolation problem
where clusters are made out of sites connected by non-frustrated links). This model has been
simulated in 3D [265, 266] where different regimes have been singled out. The percolation
transition occurs at a given value of the chemical potential µp and manifests in the onset of
two different relaxational regimes (a fast exponential relaxation followed by a slow stretched
decay). A second transition is observed at a higher value of µ, µd > µp where the relaxation
time grows extremely fast and dynamics arrests. However, it is unclear whether the relaxation
time diverges at µd . Less clear is, in the case of the existence of a dynamical singularity
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effective temperature. From [266].

at µd , whether this is associated with a thermodynamic singularity. For the FILG (249)
different correlation functions can be constructed depending on whether spin variables σ

or occupancies n are considered. A study of FDT violations in this model leads to the
following conclusions [266]: (1) in the glassy regime µ > µd dynamics is one-step like, i.e. a
two-timescale scenario with two temperatures describes the relaxational behaviour pretty well;
(2) the effective temperatureTeff, as derived from the slope of the FD plots, is pretty independent
of the observable, whether this corresponds to spin variables (C(t, tw) = 〈σ(t)σ (tw)〉) or
mixed spin-occupancy variables (C(t, tw) = 〈σ(t)n(t)σ (tw)n(tw)〉) and (3) Teff is apparently
independent of the waiting time. However, this last result has to be taken with caution as
the range of waiting times considered in [266] may not be large enough14 to display such a
small effect (compare for instance with the results described in section 7.1, figure 21). The
observable independence of Teff is shown in figure 28. It should be noted that the above
scenario is reminiscent of 1RSB behaviour and occurs in finite D rather than in the mean-
field limit D → ∞. Actually the mean-field version of the model does not have a 1RSB
low-temperature phase [267].

7.3. Coarsening systems

Although coarsening has been briefly sketched in section 6.6 here we present a more detailed
account of results. Coarsening systems are the paradigm of systems which do not reach
equilibrium. In such systems TTI does not hold, and all time-dependent correlation functions
for large times are of the form C(t, s) = C(L(t)/L(s)) where L(t) ∝ t1/z is the typical size
of the coarsening regions [268]. The dynamic exponent z is characteristic of the universality
class of the system and its value depends on whether dynamics conserves or not the value of
the order parameter. This functional form is similar to that found for the long-time correlation
functions of glasses in the aging regime, and indeed a certain type of coarsening has been
advocated as responsible for slow relaxation in glasses [51, 269–271]. The difference between
the two systems only becomes manifest when one also considers the response functions
associated with the correlation functions. Glasses, such as spin glasses or molecular glasses,
14 In fact, the range of waiting times explored does not even cover one order of magnitude.
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are characterized by long-term memory which results in a non-zero FDR X. On the other hand,
for stochastically stable systems [160, 161] the FDR X(C) coincides with the static Parisi
function (246). For a ferromagnetic system P(q) is trivial

P(q) = δ(q − m2) (250)

where m = m(T ) is the magnetization at temperature T, and hence X is 1 if 1 > C > m2

and 0 if C < m2. The argument can be easily extended to the case of a few separate phases.
Therefore we expect that in systems in which two (or few) phases separate, X should vanish
for long times, signalling the presence of weak long-term memory.

The simplest model displaying domain growth is a ferromagnetic Ising model on a square
or cubic lattice of linear size L with single-spin-flip Glauber dynamics. When the system is
quenched at time t = 0 from a random configuration (T = ∞) to a finite temperature T below
the critical temperature Tc, domains of ‘up’ and ‘down’ spins start to form and grow. This is
well reflected by the behaviour of the two-times spin–spin correlation function

C(t, s) = 1

N

N∑
i=1

〈σi(t)σi (s)〉 (251)

which for times t − s � s (assuming s < t) is TTI and rapidly decays from 1 to m2,m being
the average magnetization at temperature T. Later, for more separate times t − s � s the TTI
is lost, and the aging part of the correlation scales as

Cag(t, s) = F

[
L(t)

L(s)

]
(252)

where L(t) is the typical size of the domains at time t. The calculation of the linear response
proceeds as usual, i.e., at a certain waiting time tw a small magnetic field hi is applied and the
induced magnetization is computed. For disordered systems, such as spin glasses, the applied
field can be either uniform or random. The advantage of an uniform field is that averaging over
different realizations of the field is avoided. However, for systems without disorder, such as
ferromagnetic systems, a uniform field would favour one of the phases making it grow faster.
In this case, a random field must be used and the correct quantity to measure is the staggered
magnetization [272],

M(t, s) = 1

N

N∑
i=1

〈σi(t)hi〉 (253)

where hi is the local (quenched) random field, and the overbar denotes average over the field
realizations.

In figure 29 we show the curves χ(t, tw) = M(t, tw)/h versus C(t, tw) obtained with a
bimodal field distribution hi = ±h [272]. The FDT region and the flattening of the curve
are well evident. Two aspects of these curves are worth noting. First of all the value of the
plateau reached by the magnetization decreases as tw increases. Moreover, for fixed tw the
magnetization first grows in the non-aging part as h(1 − C)/T , then saturates and eventually
goes down again. Indeed, the comparison [273] with the equilibrium response function shows
that the equilibrium value of the response lies rather below the plateau. The study of a soft
spin version with Langevin dynamics [272, 273] leads to similar results.

There are two contributions to the staggered magnetization: one from the domain walls,
the other from the domain bulk. The difference between the plateau and the equilibrium values
of M(t, tw) can be attributed to the domain wall response. After a time tw the domains have
reached a certain typical size, and the domain walls have a certain total length. The effect of
the random field is to try to flip some spins. Clearly, the flipping is easier at the domain walls
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Figure 29. T M(t, tw)/h versus C(t, tw) domain growth. Left panel: 2D case with Tc = 2.27,
at temperatures (from top to bottom) T = 1.7 and tw = 200, 400, 800, 2000, T = 1.3 and
tw = 800, T = 1 and tw = 800. Right panel: 3D case with T = 2.5 (Tc ≈ 3.5), tw =
100, 300, 600, 1000, 1500. The straight line is M = 1−C: we see that FDT holds at short times t,
and the violation of FDT with X = 0 at longer time separation. From [272].

where the spins are less constrained by their neighbours. As time proceeds the domains grow,
increasing the bulk at the expense of the total domain wall length. Therefore the contribution
from the interfaces decreases with time. On the other hand, the contribution of the bulk is
almost independent of tw since the effect of a random field on ‘up’ and ‘down’ domains is
the same on average. Therefore, after the initial quasi-equilibrium growth, the total staggered
magnetization decreases as tw increases and, for a fixed value of tw it decreases as t increases.
Analytical results [273] show that the aging part of the IRF is of the form

Mag(t, s) ∼ A(s)F

[
L(t)

L(s)

]
Cag(t, s) ∼ F

[
L(t)

L(s)

]
(254)

where

A(t) ∼ 1

L(t)
d > 2

∼ ln(L(t))

L(t)
d = 2. (255)

Because X(s) ∼ ∣∣ ∂A(L(s))

∂L(s)

∣∣ the results (255) explain the slower decrease of the IRF for the
two-dimensional case observed in figure 29. The numerical test of the scaling law (255) in
two dimensions is shown in figure 30.

This scenario leads to the conclusion that coarsening systems do not display a non-trivial
X(C). Recent results [217], however, indicate the possibility of non-trivial X(C) also in these
systems. The motion of the domain wall in the presence of an external random field follows
from two competing processes: the tendency to reduce the interface curvature due to surface
tension and the pinning of the domain wall in favourable positions introduced by the external
field. This introduces a dependence on the space dimension since the curvature process,
which dominates at large enough dimensions, weakens as the dimension decreases. When
the dimension reaches the lower critical dimension the curvature process disappears and the
response of the system becomes non-trivial [214, 217] as is indeed seen for the ferromagnetic
Ising chain (d = 1) [182, 212]15.

15 See also the discussion in section 6.6. Similar effects are also observed in kinetically constrained models described
in section 7.5.
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The domain walls may give a large contribution to the response also at the early FDT part,
but almost exclusively from their deformation on relatively short lengths. These fluctuations
can be considered thermalized and hence do not spoil the 1/T behaviour but, on the contrary,
contribute to making the 1/T slope of the initial part in the FD plot longer. A generalization
of the Ising model to include some frustration via long-range antiferromagnetic interactions
has been studied in [274]. Models of this type have been proposed to study, among others,
the avoided phase transition in supercooled liquids [275] and charge density waves in doped
antiferromagnets [276]16. They are described by the Hamiltonian

H = −δ
∑
〈i,j〉

σiσj +
∑
(i,j)

σiσj

r3
ij

(256)

where σi are Ising spins, the first sum runs over all pairs of nearest neighbour sites of the lattice,
the second over all distinct pairs, and rij is the distance between sites i and j . The parameter
δ represents the local/non-local exchange ratio. It is known [278] that for a two-dimensional
square lattice the ground state of the model is antiferromagnetic for δ < 0.85. For δ > 0.85
the antiferromagnetic state becomes unstable with respect to the formation of striped domains.
The study of the non-equilibrium dynamics reveals a crossover from a logarithmic decay for
δ < δc ∼ 2.7 to an algebraic decay for δ > δc [274]. However, despite this richer scenario,
the FD plot leads in both cases to a vanishing X, and hence to a coarsening scenario. Similar
results are found in other coarsening-like systems such as the Migdal–Kadanoff spin glass
[279] although in that model the definition of the dynamics appears rather tricky as most of
the spins occupy the deepest hierarchical layer in the model.

We conclude this section on coarsening by discussing a hard-sphere lattice gas model in
the spherical approximation originally introduced by Lebowitz and Percus (LP) [280]. The
interest in this model is twofold. On the one hand, its dynamical behaviour can be solved
analytically, hence allowing a detailed investigation of the non-equilibrium behaviour. On the
other hand, it is known that hard-sphere models have a fragile-glass behaviour [90].

Lattice-gas models are defined on a lattice of finite dimensions. On each site there can
be a density ρ(x) of particles, which in the limit of hard spheres can take only the values 0

16 These models are of interest for information storage in ultra-thin ferromagnetic films [277].
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(empty) or 1 (occupied ). In the LP model this restriction is relaxed and ρ takes any continuous
value allowed by a spherical constraint:

σ1 ≡
∑

x

ρ(x)2 −
∑

x

ρ(x) = 0. (257)

There is the additional restriction that the density–density correlation function between nearest
neighbours vanishes. This is added to mimic some kind of extended hard-core,

σ2 ≡
∑

x

∑
q

ρ(x)ρ(x + q) = 0 (258)

where q are the vectors that join a lattice site x to its nearest neighbours. In [31] the following
Langevin dynamics for an open system has been studied,

∂

∂t
ρ(x′, t) = µ − ∂

∂ρ(x′)
H[ρ(x′), t] + η(x′, t) (259)

where µ is the chemical potential, η the thermal noise, and H the Hamiltonian

H = λ0(t)
∑

x

[ρ(x)2 − ρ(x)] + λ1(t)
∑

x

∑
q

ρ(x)ρ(x + q). (260)

Strictly speaking in this model there is no energy, but only entropy. The role of λ0(t) and λ1(t)

in the Hamiltonian is to make the dynamics fulfil the constraints (257) and (258) at all times.
The non-equilibrium dynamics of this model shares a large number of features with that of
the spherical SK model [149, 150, 281] where the dynamics is driven by the macroscopic
condensation of the system onto the disordered ground state. A positive chemical potential
would increase the local density, thus starting from an empty state the local density relaxes
towards the equilibrium value. The relaxation can be divided into two regimes, the first one
where the system is filled in a spatially uncorrelated way. The typical time for this process
is order t∗ ∼ O(1). It is only later that slow relaxation starts when the system is spatially
correlated and needs to reorganize large regions in order to increase its density. The model
has no built-in disorder, and the slowing down is a purely entropic, direct consequence of the
decrease in the number of available configurations imposed by the short-range constraints.
When the temperature is below the critical temperature Tc the two motions have well-separated
timescales and the two-times correlation function shows the usual two-step form with the first
part TTI and the second part scaling as t/tw , see figure 2 (the plot corresponds to the 3D
model at T = 0.1; different waiting times from top to bottom are tw = 10 000, 1000, 300,
100, 30, 10, 3, 1). Study of the FDR reveals that there is no anomaly in the response function
[31] and X vanishes for values of C below the plateau value of the correlation. The glassy
scenario of this model corresponds to that of phase-ordering kinetics with non-conserved
order parameter. Similar results have been reported in spherical models with long-range
ferromagnetic interactions [282].

7.4. Non-relaxational driven systems

We have been underlining throughout this review that aging systems are characterized by
non-equilibrium behaviour with lack of TTI and by the presence of FDT violations. The
relevant parameter which controls the aging non-equilibrium state is the waiting time or time
elapsed since the system was quenched. However, there is another way to generate a non-
equilibrium state that can be characterized by a given timescale in the same fashion as the
waiting time characterizes the aging state. For instance, adding a time-dependent perturbation
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of frequency ω to a time-independent Hamiltonian. In the regime where ωtw � 1 the
perturbation oscillates slow enough to probe only slow processes occurring at timescales
τ � tw. While in the opposite regime ωtw � 1 the oscillatory perturbation probes fast
relaxation processes occurring at timescales τ � tw . The line ωtw ∼ 1 marks the onset of
glassy behaviour, the shape of this line depending also on the intensity of the perturbation.

Driven systems have advantages when compared to aging systems. One of the most
important differences is that driven systems, in the stationary state, are TTI but FDT is still
violated. Again the concept of an effective temperature can be introduced as a measure of
these violations. However, as the non-equilibrium stationary state of driven systems can be
described by the intensity of the driving force, they are more experimentally accessible than
aging systems, where the waiting time appears as an external parameter difficult to control.
For this reason, it has been advocated that experimental measurements of FDT violations and
the effective temperature should be made in driven systems rather than aging systems.

There are many ways to put a system into a driven stationary state and these have been
investigated in the literature for different types of models. Driven systems can be classified
into the following two main groups:

• Sheared systems. In this case one considers systems where, in addition to conservative
forces, other non-conservative forces (i.e. that cannot be derived from a potential function)
act upon the system. In these systems the non-conservative forces may be time dependent
or not. In both cases, the non-conservative forces do not work along a given closed
dynamical path. This implies that energy power is continually supplied to the system by
the driving force. The parameter which describes the stationary state is the intensity of
the shearing or driving force which we will identify by the symbol ε or γ̇ . These systems
include models that violate the action–reaction principle (such as models with asymmetric
couplings) and sheared fluids. These systems are described in section 7.4.1.

• Tapped systems. In this class, systems are driven to a non-equilibrium state by a time-
dependent force which, however, derives from a time-dependent potential. This means
that the driving force, if constant in time, does not exert work upon the system whatever
its intensity ε. This class of systems includes spin-glass models in a oscillating magnetic
field and tapped granular systems where the relevant parameter is the frequency of the
driving force. These systems are described in section 7.4.2.

7.4.1. Sheared systems. Studies of models described by non-conservative forces go back
to the study of neural network models described by synaptic interactions that are non-
symmetric [283]. This has inspired future investigations of disordered models where couplings
among spins include an important degree of asymmetry. In [284, 285] was considered the
relaxational dynamics of the p = 2 spherical spin glass with pairwise interactions Jij given
by Jij = J S

ij + εJ A
ij where J S

ij = J S
ji denotes the symmetric (therefore conservative) part and

J A
ij = −J A

ij stands for the antisymmetric (therefore non-conservative) part. It was shown that
any finite amount of asymmetry is enough to destroy the spin-glass phase. The relaxational
time of the system was found to diverge as ε−6 for ε → 0. Importantly, this result suggests the
following general scenario: whatever the intensity of the non-conservative force, the stationary
state has a finite relaxation time, therefore the stationary state, although of non-equilibrium
nature, must be TTI (and, therefore, correlations and response functions do not display aging).
Subsequent investigations have confirmed this result showing that this is a generic feature of
driven systems.

Among this family of asymmetric spin-glass models, one which has been intensively
investigated in past years is the p-spin spherical spin-glass Hamiltonian (150), (151) with
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Figure 31. FD plot for the model (261)–(263) with k = p = 3 and T = 0.613 > Tc = 0.612.
The full line is the ε = 0 equilibrium curve. Dashed lines correspond to (from bottom to top)
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From [287].

asymmetry in the interactions. The model is defined according to the following Langevin
dynamics [286, 287]:

∂σi(t)

∂t
= −r(t)σi (t) + Fi({σ }) + ηi . (261)

This dynamics is the same as (153) but now the force Fi({σ }) is replaced by

Fi({σ }) = − δH
δσi

+ F drive
i ({σ })

= − δH
δσi

+ ε
∑

j1<···<jk−1

K
j1,j2,...,jk−1

i σj1,...,σjk−1 (262)

where H is the Hamiltonian given in (150) and the driving force F drive
i ({σ }) describes a k-spin

interaction term where the couplings K
j1,j2,..,jk−1

i are uncorrelated among all permutations of
the k different indices (i, j1, j2, . . . , jk−1),

K
j1,j2,...,jk−1
i K

j1,j2,...,jr−1,i,jr+1 ,...,jk−1
jr

= 0. (263)

These models show the following behaviour. In the regime above the mode-coupling
temperature Tc, the relaxation time is finite for the unsheared model ε = 0. Therefore
both TTI and FDT hold in the stationary state. A small driving force ε > 0 puts the system in
a new stationary state where TTI holds but FDT is violated. Numerical analysis of the mean-
field equations [287] reveals that both FD plots and the value of the FDR are very similar to
those found in aging systems. Figure 31 shows these quantities above Tc for the model with
parameters k = p = 3. Below Tc a new phenomenon, called ‘shear thinning’, occurs. At
ε = 0 the relaxation time diverges (as is common in mean-field (MF) models where activated
processes are neglected, see discussion in section 6.1). However, as ε > 0 the relaxation
time becomes finite and decreases with ε (shear thinning). Again, numerical analysis of the
mean-field equations reveals that for finite ε the resulting FD plots are the same as for an aging
system with a waiting time tw given by tw ∼ ε−α(T ) where α(T ) is a temperature-dependent
exponent that takes the value 2 at Tc and slowly increases as T decreases. This scenario, as
derived from the study of MF spin-glass models, has been confirmed in numerical studies of
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Figure 32. Viscosity as a function of the shear rate for the LJ (top panel) and MF spin-glass
models (bottom panel). The viscosity η and shear rate γ̇ in the LJ fluid correspond to the
terminal time τα and ε/τα , respectively, in the MF model. Tc � 0.435 in the LJ model and
Tc � 0.612 in the MF model. Temperatures (from bottom to top): (bottom panel) 0.9, 0.8.0.7, 0.64,
0.62, 0.613, Tc, 0.6115, 0.58, 0.45, 0.3, 0.01 and (upper panel) as indicated in the box. From [287]
(top panel) and [289].

binary mixtures of Lennard-Jones (LJ) sheared fluids (see section 7.1.2). In a series of papers,
Barrat and Berthier [288–290] have shown that driven short-range systems display the same
features as their equivalent MF disordered models. These similarities have been confirmed
by other studies that measure the temperature dependence of the shearing rate at which the
average potential energy deviates from its equilibrium value [291]. The similarity between LJ
models and MF spin glasses is striking concerning rheological properties. In a sheared fluid
the velocity field v = γ̇ yex induces a stress σxy that is well described by the phenomenological
law: σxy = σ0 +aγ̇ n. This law is commonly found in rheological systems [292]. The viscosity
is defined by η = σ/γ̇ : for Newtonian fluids n = 1 and σ0 = 0, the viscosity is therefore
independent of the stress. However, this is known to be inaccurate as many complex fluids
show transport coefficients (such as the viscosity) that depend on the shear rate (for a discussion
on these effects in the framework of non-equilibrium thermodynamic theories see [293, 294]).
In figure 32 we show the flow curves for the viscosity as a function of the shear rate for both the
LJ fluid and the MF spin glass, the viscosity η and the shear γ̇ in the LJ model corresponding
to the terminal relaxation time τα and ε/τα in the MF spin glass respectively. The similarity



Topical Review R269

Figure 33. Fourteen FD parametric plots in the LJ model showing the independence of the effective
temperature from the observable. The numbers in the key of the figure indicate different values of
the wave vectors; 1.87 refers to class 1 in the text. ‘coh’ stands for coherent or global scattering
functions (class 2). A and B refer to the two different chemical species, (A + B) standing for
incoherent scattering observables independently measured for A and B species (class 3). ‘self’
indicates the use of the mean-square displacement (class 4). ‘stress’ refers to class 5. The value of
the effective temperature is compatible with Teff = 0.65 > T = 0.3 for all cases. From [289].

is noteworthy. There are two regimes depending on whether T > Tc or T < Tc. In the
first regime the fluid is Newtonian at low shearing rates so the viscosity is shear independent.
In this regime, standard non-equilibrium thermodynamics [295] is applicable. However, for
T < Tc the fluid is non-Newtonian and the viscosity diverges at zero shear, η ∼ γ̇ −α(T )

with α(T ) between 2/3 (at Tc) and 1 (for T → 0) in agreement with the aforementioned
results found in the MF spin glass. The central question addressed in [288–290] was the
dependence of the resulting FD plots on the type of observable used as a perturbation. They
considered five different classes of observables: (1) the incoherent part of scattering functions
(corresponding to single particle density fluctuations), (2) the coherent part or the correlations,
(3) the ‘chemical’ observables associated with correlations of a single species of particles in
the binary mixture, (4) the mean-square displacement of particles associated with a constant
small force transverse to the flow and (5) the stress in the transverse direction after compression
of the box; (1), (2) and (3) were measured at different wave vectors. In all cases, the effective
temperature was found to be the same within numerical accuracy. A compendium of their
results is shown in figure 33. There have been other studies on driven systems that have
investigated the shear thinning effect, i.e. whether a driving force of rate γ̇ stops aging up
to a timescale proportional to 1/γ̇ by restoring TTI. Corberi et al [296] have investigated
coarsening models in the presence of a driving force. In particular, they have considered a
N-component ferromagnetic model with non-conserved order parameter in the large N limit.
The authors find that, above the ferro–paramagnetic transition temperature Tc, the inverse of
the driving rate 1/γ̇ sets the timescale after which aging stops and the system becomes TTI.
However, below Tc, contrary to what is observed in MF spin glasses, aging never stops even in
the presence of shearing. The origin of this difference is unclear. It could be related to the fact
that in coarsening systems the mechanism responsible for aging is different from that in MF
spin glasses or LJ glasses. This difference can be traced back to the absence of complexity
in the coarsening model as compared to the other cases. Moreover, this behaviour has to
be contrasted with what is found in tapped systems such as MF spin glasses in an AC field
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[297] where aging survives below Tc in a certain range of magnetic field values (see further
discussion on this model in section 7.4.2). Other, studies have considered models such as
vortex glasses with random pinning centres in two dimensions [298] where the external driving
force is uniform over all vortices. Also in this case FDT violations appear to be described
by an effective temperature related to the slow motion of vortices. Trapping dynamics due to
pinning defects has also been considered in the study of a driven classical particle subjected
to a force [299, 300]

A common feature of all the studies reported here, that has not been emphasized enough
in the existing literature, is that measured correlations must be transverse to the direction of
the shear flow to yield a meaningful effective temperature. FDT violations for longitudinal
observables are apparently not described by an effective temperature. This suggests that neutral
observables describing an effective temperature are restricted to the transverse direction, a fact
that as yet lacks a clear explanation.

7.4.2. Tapped systems. As already mentioned, another class of driven systems corresponds to
those where the external force derives from a time-dependent potential that pumps energy into
the system. This also includes driven granular media that have recently received considerable
attention.

In [297], the authors have studied the MF p-spin glass model in an oscillating AC field.
This problem is interesting as it shows a behaviour different from that observed in sheared
MF spin glasses or LJ glasses (see section 7.4.1). The model considered was again (150) but
in the presence of an uniform AC field of frequency ω and intensity h. The phase diagram of
the model is described by three parameters T , h, ω. Below Tc, at fixed ω, the glassy phase
survives below a critical field h∗

ω(T ) meaning that, contrary to sheared systems, a small driving
force does not destroy the glassy phase and aging never stops, hence TTI is not restored. This
justifies the use of AC fields in experiments to explore the aging regime within the linear
response region. A striking result in these studies is the presence of reentrant behaviour at
constant field h, as ω is varied, indicating that limω→0 h∗

ω(T , ω) < h∗
ω (T , ω = 0), a result that

still needs to be clarified. All over the glassy phase of the driven model FDT is violated with
the characteristic FD plots of the corresponding relaxational model.

Granular systems may present very slow processes, analogous to what is seen in glasses.
Similar to what has been done for other glassy systems one can try to describe the dynamics
of the slow degrees of freedom through an effective temperature defined from the FDR [100].
The first example we consider is the kinetically constrained Kob–Andersen model [301] that,
even if very schematic, reproduces rather well several aspects of glasses [302] and of granular
compaction [303]. Although section 7.5 is devoted to kinetically constrained models we prefer
to describe the Kob–Andersen model here since it is a good model for granular media. This
model consists of N particles in a cubic lattice, with periodic boundary conditions. There can
be at most one particle per site. Apart from the hard-core repulsion there are no other static
interactions among particles. At each time step a particle can move to a neighbouring empty
site of a three-dimensional lattice only if it has less than four neighbours in the initial and final
positions. In its simpler version there is no gravity, but the system is subject to a constant
pressure on its surface, obtained by adding or destroying particles on the topmost layer with
a chemical potential µ. The dynamic rule guarantees that at equilibrium all configurations of
a given density are equally probable. Indeed when the density is of the order of the jamming
density ρg � 0.88 the particle diffusion becomes extremely slow, due to the kinetic constraints,
slowing down the whole compaction process. As done for glasses, one can try to describe the
slow non-equilibrium motion through an effective dynamical temperature Teff which can be
defined via a generalization of the Einstein–Stokes relation between the diffusion coefficient
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and the viscosity to a non-equilibrium (aging) situation,

∂

∂f
〈r(t) − r(tw)〉 = −X(B)

2T

∂

∂tw
〈(r(t) − r(tw))2〉 (264)

where r is the particle position, f a (small) perturbing field, t > tw two widely separated
times, and B(t, tw) the mean-square displacement:

B(t, tw) = 〈(r(t) − r(tw))2〉

= 1

3N

3∑
a=1

N∑
i=1

〈[
ra
i (t) − ra

i (tw)
]2
〉
. (265)

The linear response function can be computed numerically by applying a small random
perturbation at time tw of the form [304]

δHε = ε

3∑
a=1

N∑
i=1

f a
i ra

i (266)

where f a
i are independent quenched random variables which take the value ±1 with equal

probability. With this choice the IRF is defined as

χ(t, tw) = 1

3N

3∑
a=1

N∑
i=1

〈
f a

i �ra
i (t)

〉
(267)

where �r(t + tw) is the difference between the displacement of the same particle in two
identical copies of the system, one evolving in presence of the external perturbation and one
without. From (264) χ is related to B through

χ(t, tw) = ε

2T

∫ B(t,tw)

0
X(B) dB

= ε

2Teff
B(t, tw) if X(B) = m = const (268)

with Teff = T/m. The numerical simulations show a two-regime scenario [304] similar to
what is seen in glasses, i.e., for t − tw smaller than tw m = 1 and FDT holds, while for
t − tw � tw FDT is violated with m < 1, see figure 34. As discussed in section 5.3 the value
of the observables attained dynamically in a granular system could be computed from the usual
equilibrium microcanonical distribution at the corresponding density ρ restricted to the subset
of blocked configurations (Edwards ensemble), i.e., only to those configurations in which every
grain is unable to move. Very similar to the IS analysis in glassy systems (section 4.5), the
Edwards ensemble leads to the definition of a temperature, called the Edwards temperature, as

1

TEdw(ρ)
= − 1

µ

∂sEdw(ρ)

∂ρ
(269)

where sEdw(ρ) is the Edwards entropy density obtained from the logarithm of the number
of blocked configurations of given ρ, see (135). The chemical potential fixes the dimension
[305, 306].

The Edwards entropy for this model has been computed in [305, 306] through the use of
an auxiliary model in which each particle has energy equal to 1 if the dynamic rules allow
it to move, and zero otherwise. The auxiliary energy Eaux is hence equal to the number of
mobile particles. The configurations of the auxiliary model are sampled with a Monte Carlo
procedure with non-local moves at the auxiliary temperature 1/βaux. These non-local moves
have nothing to do with the true dynamics of the original model, and the auxiliary model is not
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Figure 34. Einstein relation in the Kob–Andersen model: plot of the mobility χ(t, tw) versus
the mean-square displacement B(t, tw) (data shown as circles). The slope of the full straight line
corresponds to the equilibrium temperature (T = 1), and the slope of the dashed one to Edwards’
prescription obtained from figure 35 at ρ(tw) = 0.848. From [305].

glassy. This allows us to obtain equilibrium properties such as the auxiliary energy density
eaux from which the entropy density can be obtained via thermodynamic integration,

saux(βaux, ρ) = sequil(ρ) + βauxeaux(βaux, ρ) −
∫ βaux

0
eaux(β

′
aux, ρ) dβ ′

aux (270)

since saux(0, ρ) = sequil(ρ). The blocked configurations at a given density can be computed
performing a simulated annealing down to βaux → ∞ of the auxiliary model at fixed particle
density. The Edwards entropy density is then obtained as

sEdw(ρ) = lim
βaux→∞

saux(βaux, ρ)

= sequil(ρ) −
∫ ∞

0
eaux(βaux, ρ) dβaux. (271)

since e(βaux, ρ) vanishes for βaux → ∞. The Edwards entropy is shown in figure 35 as a
function of density. We are now in a position to compare the long-time non-equilibrium results
with those obtained from the Edwards measure. In figure 34 is shown the mobility χ(t, tw)

versus the mean-square displacement B(t, tw). The agreement between Teff and TEdw is clearly
satisfactory.

Similar results have also been found [305–307] for models with geometrical, rather than
kinetical, constraints, the so-called ‘Tetris’ models [308, 309]. These models are defined
on a two-dimensional lattice with particles of randomly chosen shapes and sizes. The only
constraint is that particles cannot overlap: for two nearest neighbour particles the sum of the
arms oriented along the bond connecting them has to be smaller than the bond length.

Tapped granular matter [310, 311] has been considered in several models such as the
one-dimensional (1D) model ferromagnet [312] showing that the Edwards measure provides
a very good description of the stationary state. A similar agreement is found in simulations of
sheared granular matter [313]. Real compaction occurs in the presence of gravity [314]. The
gravity introduces an extra term in the Hamiltonian

Hg = mg

N∑
i=1

hi (272)

where g is the gravity constant, m the particle mass and hi the height of the ith particle.
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The simplest way of including gravity in the above models is assuming that particles can
move up and down (if they respect the geometrical or kinetical constraints) with different
probabilities, p = min[1, exp(−mg�h/T )] where �h = −1, 0, 1 is the elementary vertical
displacement. A closed boundary is situated at the bottom of the system. The control parameter
x = exp(−mg/T ) represents the ‘vibration’. The presence of gravity introduces a preferred
direction in the diffusive motion (downwards) which in turn may produce inhomogeneities
in the vertical density profile making the situation more complicated, moreover horizontal
(transversal) and vertical (longitudinal) quantities must be treated separately.

Inhomogeneities are only along the vertical direction, so transversal observables when
measured well inside the bulk are not too sensitive to the detailed form of the density profile.
Indeed if homogeneity of the bulk is imposed, the dynamical temperature obtained from the
FDT ratio for the horizontal displacement mobility coincides with the Edwards temperature
[307].

The analysis of the FDT ratio for the longitudinal motion [315, 316] also shows a two-
slope scenario, however the comparison with the Edwards measure is more complex due to the
presence of inhomogeneities. In [316], based on the observation that the density profile far from
the top and bottom layers is rather flat, the effective dynamical temperature for longitudinal
observables and the Edwards temperature have been compared assuming a homogeneous
density. The comparison, however, reveals strong deviations when inhomogeneities are
stronger indicating that inhomogeneities of the density profile must be included. This could
be done by using the recently introduced restricted Edwards measure [116, 317], a route not
yet explored.

We stress that the Edwards measure is constructed from a white sampling of blocked
configurations, hence it reproduces the physical quantities at large times only if this condition is
satisfied by the long-time dynamics. In other words, the Edwards measure can be inappropriate
even though the system presents a slow dynamics. This is for example the case of the three-
dimensional Ising model in a weak random magnetic field [305, 306]. Here the long-time
configurations at low temperatures are made of domains of ‘up’ and ‘down’ spins of similar
volumes, so that the global magnetization is zero. This is quite different from either the
equilibrium or blocked configurations since both of them are magnetized. Other studies have
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extended this method to the study of kinetically constrained models (KCMs) (see section 7.5)
such as the Kob–Andersen model [318].

7.5. Kinetically constrained models

A category of statistical models that has received considerably attention during the last few
years is kinetically constrained models (KCMs). In a nutshell, KCMs are models with trivial
thermodynamics but complicated dynamics arising from a, put by hand, set of forbidden
transitions in configurational space. Allowed transitions are selected according to a given
transition rule that constrains the dynamics of the system. There are different ways to justify
KCMs as valuable models for glassy dynamics. One can think of KCMs as effective models
in which the slowest degrees of freedom are idealized as quenched variables that manifest
as dynamical constraints. Therefore, the statistical variables of KCMs can be seen as the
fast dynamical variables that are slaved, through the dynamical constraints, to the motion of
the slowest ones. These constraints are of local nature as also is the interaction between the
original degrees of freedom.

KCMs display most (if not all) of the features characteristic of glassy systems including
slow relaxation, activated behaviour, cooperativity and non-equilibrium phenomena such as
aging and FDT violations. Recently, a review on KCMs has been written that covers all
these aspects. For this reason, here in this review we will not dwell much on discussing FDT
violations on these models but content ourselves with underlining some of the most important
results. We refer the reader to [15] for a comprehensive and exhaustive survey.

The most representative families of KCMs are spin-facilitated models [319, 320], lattice
gases [301, 302, 304, 321, 322], topological cellular models [323, 324] and plaquette models
[325–327]. We already discussed in section 7.4.2 the Kob–Andersen model as an example
of kinetically constrained lattice gas for granular matter. There are two aspects of KCMs
that make them especially attractive from a theoretical point of view. On the one hand,
the thermodynamics of KCMs is straightforward, there is no underlying thermodynamic
singularity, and even more astonishing, often the model is purely non-interacting from the
point of view of its equilibrium properties. On the other hand, the non-interacting character
of the energy function entails that the slow dynamics is described by representing the original
variables in terms of a new set of effective variables. Relaxation can be visualized as a
dynamical process where defects diffuse (in either a free or cooperative way) and annihilate
each other, leading to a more tractable problem from the analytical point of view.

We begin our tour by presenting the simplest among these types of models. Our intention
is to illustrate with an example what type of models KCMs are. Maybe the simplest
KCM is the spin-facilitated model (SFM) introduced by Fredrickson and Andersen (FA)
[319, 320] consisting of free ‘spins’ in a field. The model is defined by

E = h

N∑
i=1

ni (273)

where ni = 0, 1 corresponding to two possible orientations of the spins (n = 1 up, n = 0
down)17 that occupy a D-dimensional lattice. This model would be trivial if it were not for
the dynamical rules that describe how spins can flip. In the standard SFM model transitions
ni → 1 − ni are allowed if at least f among the possible nearest neighbours are up or
n = 1. This model defines the f, d-SFM that shows different behaviour according to whether
17 The variables n cannot be considered as occupancies and (273) does not define a lattice gas model. In lattice gas
models the total number of particles (i.e. the energy E in (273)) is conserved while in the SFM it is not. See [15] for
a thorough discussion. However, we will continue denoting the spins by n.
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Figure 36. FD plots for the 1, 1-SFM (273) with N = 105, quench temperature T = 0.3 and
different waiting times (see the box). The straight line is the FDT relation. From [70].

f = 1 (diffusive) or f > 2 (cooperative). Variations of the SFM include KCMs with directed
constraints such as the 1D East model [328] or the 2D North-East model [329], defined again
by (273), but where a spin ni can flip only if the spin on its left is up (East model) and if
both spins that are nearest neighbours in two fixed orthogonal directions (North-East model),
point up. In one dimension, it is also possible to define a model that interpolates between the
1, 1-SFM and the East model [330].

In what follows we concentrate our attention on FDT violations in diffusive KCMs where
some understanding has been recently gained. A generic aspect of KCMs is that dynamics is
determined by the motion and annihilation of isolated defects. Slow dynamics strictly occurs at
temperatures close to T = 0 (and timescales larger than an initial fast transient). The relevant
relaxing variable is the number of isolated defects c(t) (e.g. in the 1, 1-SFM this corresponds
to the number of up spins). This has interesting consequences [217, 327, 331] in the behaviour
of the IRF. The IRF in the presence of an external random staggered field χ(t, tw) is then
proportional to the product of the number of isolated defects c(t) and the individual local
response typical of one defect χeff . This local response is TTI as the defect is isolated
leading to

χ(t, tw) � χag(t, tw) = c(t)χeff

( t − tw

τ (T )

)
(274)

where τ (T ) is the relaxation time of the defect. This relation has two important consequences:
(1) the function χ(t, tw)/c(t) is TTI, a result which is characteristic of coarsening systems
(see below) but not of other (cooperative) glassy models where the IRF is a genuine aging
function depending, for instance, on the ratio h(t)/h(tw) and (2) χ(t, tw) has a maximum as
a function of t − tw when the defect concentration (that decreases with time) compensates the
growth of the monotonically increasing effective response χeff .

Non-equilibrium measurements for the 1, 1-SFM [70, 332] and related models such as
the 2D triangle model [333, 334] or topological cellular models [323, 324] show an IRF (274)
displaying a maximum as a function of t − tw and leading to awkward FD plots. One example
is shown in figure 36. Buhot and Garrahan [327] have explained how to recover well-defined
FD plots by using (274) and plotting χ(t, tw) as a function of the difference Cc(t, t)−Cc(t, tw)
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where Cc is the standard connected correlation function Cc(t, s) = 〈(n(t)−c(t))(n(s)−c(s))〉
with c(t) = 〈n(t)〉 for the 1, 1-SFM. In this case, the resulting FD curve corresponds to a
straight line (corresponding to the equilibrium result) casting doubts on the usefulness of FD
plots for non-cooperative models.

The origin of the maximum in the IRF has also been considered in the 1D RFIM with
infinite-ferromagnetic coupling J = ∞ [331]. Actually, in this limit the model turns out to be
a KCM as transitions are only allowed on the spins sitting on the interfaces of the ferromagnetic
domains, i.e. a spin can flip only if its left and right neighbours point in different directions
(meaning that the ferromagnetic contribution to the local field acting on that spin vanishes).
If quenched at low enough temperature this model displays a coarsening behaviour with two
well-separated regimes. If the average distance between interfaces (or average domain length)
L(t) is smaller than a length scale Lg ∼ (T /h0)

2 (where h0 is the mean-square deviation of
the intensity of the random field) then dynamics is diffusive. However, if L(t) > Lg dynamics
becomes activated of the Sinai type. In the Sinai regime the IRF is well described by the
relation (274), χ(t, tw) = χag(t, tw) = c(t)χeff(t, tw), leading to a maximum of the IRF at
intermediate times where L(t) ∼ Lg . This relation sets a crossover timescale where pure
diffusion takes over from Sinai diffusion. Comparing this result with (70) we note that there is
no stationary contribution to the IRF because for J = ∞ thermal fluctuations within domains
are suppressed. Again this leads to FD plots similar to figure 36. For the 1D RFIM in the
asymptotic long-time limit L(t) � Lg the χ(t, tw) decays to zero, a property required to
establish a link between static and dynamic properties. As remarked in section 6.6, however,
this property does not hold for the 1D Ising model.

A description of the IRF for the 2D plaquette model along the same lines as (274), but
modified to account for the diffusion and annihilation of oscillating pairs of defects, has been
presented in [327]. The resulting FD plots have been shown to display the characteristic two
slope curves of two-timescale systems. However, it is unclear what is the physical meaning
of the piece of the curve with slope X < 1 and whether indeed Teff = T/X can be considered
a thermodynamic temperature. Future research will show what is the true meaning of these
violation factors in KCMs of the coarsening type.

FDT violations in the glassy regime of KCMs are not simply described within a
thermodynamic IS formalism, the Kob–Andersen model perhaps being an exception. In
fact, the blocked states in the 1,1-SFM and the East model generate identical configurational
entropies [70] albeit they show very different dynamics (diffusive and cooperative
respectively). The applicability of thermodynamic non-equilibrium concepts to models
with trivial equilibrium thermodynamics remains an open question.

8. QFDT: the experimental evidence

Any valuable physical theory must be successfully challenged by experiments. Traditionally,
the most direct way to experimentally access FDT violations is through noise measurements.
In the frequency domain the FDT (60) corresponds to the Nyquist formula that relates the
power spectrum of an observable to the imaginary part of its susceptibility. With the same
notation we used in sections 2 and 3 we can define the power spectrum SA,B(ω) and the
complex susceptibility χA,B(ω),

SA,B(ω) = 1

π

∫ ∞

−∞
CA,B(t) exp(iωt) dt (275)

χA,B(ω) = δ〈Â(ω)〉
δB(ω)

(276)
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where Â(ω) (and analogously B) is given by

Â(ω) =
∫ ∞

−∞
A(t) exp(iωt) dt . (277)

If χA,B(ω) = χ ′
A,B(ω) + iχ ′′

A,B(ω) the Nyquist formula (133) reads [295]

SA,B(ω) = 2kBT

π

χ ′′
A,B(ω)

ω
. (278)

The power spectrum can be experimentally measured considering the case where the external
perturbation couples to the measured observable A = B. In the experimental protocol, the time
evolution of the observable A(t) and the out-of-phase susceptibility χ ′′

A,B(ω) are recorded. The
power spectrum is given by SA(ω) ∝ 〈|Â(ω)|2〉. This allows us to verify the Nyquist relation
(278). Typical noise experiments are the observation of electric voltage fluctuations or the
motion of a Brownian particle. Other measurements included sample to sample fluctuations of
the resistivity in small samples [335, 336]. Observations of magnetic noise were successfully
undertaken in spin glasses [337–339], more than ten years ago, and despite the extremely
low noise signal characteristic of magnetic systems. Globally, these experiments show that,
within the accessible window of frequencies and times, no systematic FDT violations are
observed. The out-of-phase susceptibility χ ′′(ω) associated with χ(ω) is practically frequency
independent and the power spectrum shows the characteristic 1/f behaviour. The negative
result of these experiments points out one of the most important difficulties encountered in these
types of experiments. As they cover the frequency range 10−2–102 Hertz, these frequencies
are much larger than the inverse of the aging time, therefore only the locally equilibrated
regime ωt � 1 is explored. Only seldom is the ‘slow’ regime ωt ∼ 1, where FDT violations
are expected, measured. Very recently, direct measurements of FDT violations in the time
domain have been reported for insulating spin glasses [340]. FDT violations have been
measured beyond the quasi-stationary regime and experimental FD plots have been found
to be consistent with results obtained by numerical simulations in spin-glass models (see
section 7.2.1). However, the value of the effective temperature obtained in these experiments
is much larger than the annealing temperature at which the system is equilibrated before
the quenching takes place, casting doubts on the meaning of the effective temperature as a
thermodynamic temperature in these experiments. Moreover, these measurements reveal that,
within the experimentally accessible time window, FD curves χ(C) (103) are time dependent
and quite far from the expected asymptotic curve. This may explain previously reported
discrepancies among FD plots obtained by analysing the magnetization data of several spin-
glass systems [341]. These indirect measurements of FDT violations do not show any clear
evidence of a universal curve χ(C) and suggest that experimental measurements are quite far
from the asymptotic regime. Experimental FD plots are shown in figure 37.

In structural glasses recent measurements also show the existence of FDT violations,
however the physical interpretation of these experiments is still unclear. Voltage noise
measurements [342] in an electric resonant circuit formed by a capacitor containing glycerol
and an inductance show that the Nyquist formula (278) is violated depending on the waiting
time and the frequency. By defining the effective temperature Teff(ω, tw) as in (133) (i.e. the
temperature that satisfies the Nyquist formula (278)) experiments reveal that the capacitance
ages and FDT violations appear also in the range ωtw � 1. This seems to be in contradiction
with previous old experimental results in spin glasses. The origin of this discrepancy is
presently unclear. Other recent experiments by Ciliberto and co-workers [343, 344] on
Laponite, a synthetic clay of charged particles that have the shape of a disc, show strong FD
violations. If let evolve inside water, Laponite generates a colloid glass consisting of a packed
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Figure 37. FD plot obtained by measuring voltage autocorrelations and relaxation susceptibility
in the insulating spin glass CdCr1.7In0.3S4 quenched from T = 1.2Tg down to T = 0.8Tg
(Tg = 16.2 K). Effective temperatures are around 30 K and much larger than the annealing
temperature 19.4 K. From [340].

irregular structure of discs due to the complex pattern of quadrupolar interactions. It is found
that the value of the effective temperature Teff(ω, tw), for low enough frequencies, is up to
three or four orders of magnitude larger than the bath temperature. Although this has been
interpreted as evidence for coarsening dynamics (where Teff → ∞) a conclusive explanation
of the origin of these high values is still unknown. One interesting aspect of these experiments
is the scaling behaviour ωt1/2 observed in the power spectrum, indicative that FDT violations
persist even in the regime ωtw � 1, in agreement with the previous results on glycerol.
Contrary to what would be expected, noise measurements in a rheological experiment for
Laponite do not detect significant FDT violations.

Experiments that successfully clearly demonstrate the existence of effective temperatures
related to FDT violations are certainly needed. This preliminary account of results shows that
much work has still to be done in aging, driven or granular systems to provide a safe ground
for many of these ideas.

9. Conclusions

In this review we have presented an overview on what is now an active area of research, i.e. the
study of FDT violations in glassy systems. Glassy systems are widespread in nature and found
in many different areas covering physics, chemistry or biology. These are non-equilibrium
systems which are either in a non-stationary slowly relaxing aging state or in a weakly driven
stationary state. Equilibrium systems are often described by a set of intensive parameters such
as temperature, pressure or density. In a similar way, in glassy systems an important role is
played by the waiting time (aging systems) or the intensity of the driving force and/or its
frequency (driven systems). These parameters describe how far from equilibrium the system
is. In fact, it is becoming steadily clear that a thermodynamic description of glassy systems
can be partially rescued. In this description the glassy regime can be rationalized by using
some of the concepts of equilibrium statistical physics such as the existence of a modified
version of the FDT, the so-called quasi-FDT (QFDT).

Associated with the existence of the QFDT there is the concept of effective temperature.
Rather than being a useful parameter to describe the behaviour of non-equilibrium systems, the
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effective temperature has a deeper physical meaning. It could be the vestige of the existence of
some dynamical measure underlying the non-equilibrium regime. However, we do not know
how to prove the existence of the QFDT from first principles in the same way we do not know
how to prove the Boltzmann equal probability hypothesis in equilibrium theory. Therefore,
establishing the existence of this dynamical measure is somehow equivalent to assuming the
existence of a QFDT. Then the crucial point is what are the specific predictions, that can
be experimentally tested, one can derive from the existence of a QFDT. The measurement
of the effective temperature itself appears as the most direct way of challenging the QFDT.
However, direct measurements of this non-equilibrium temperature appear quite difficult,
results are still very preliminary and much progress is yet to be done to reach convincing and
clear evidence.

The study of several families of models, as described in this review, appears to be
a very fruitful source of inspiration for new concepts and ideas that could be eventually
exported to different classes of problems. However this path is not free of challenges
and ambiguities. Indeed, what are natural concepts for some families of models appear
to be quite artificial in other families. As an example, key concepts in a thermodynamic
formulation of the glassy state are the existence of an effective temperature associated with
the configurational entropy or complexity, in the same way the bath temperature is associated
with the Boltzmann entropy in equilibrium theory. However, what appears to be an interesting
quantity describing glassy systems with two timescales cannot be easily translated into systems
with many timescales. Furthermore, what appears to be a meaningful quantity for models
having complex thermodynamics (such as spin-glass models) appears to be meaningless in
models described by a trivial Hamiltonian (such as kinetically constrained models).

From the point of view of theoretical studies, our understanding of the existence of a
QFDT also appears quite problematic. Most of the solutions we have described in this review
are only valid in the case of mean-field interactions, however their validity beyond that limit
remains speculative. The use of numerical simulations has aided in bridging the gap. It is
quite interesting that most of the results predicted in mean-field models are qualitatively also
observed in short-range systems. This tendency to rationalize the behaviour of real systems
within a mean-field scenario, i.e. far beyond their natural domain of applicability, has become
quite standard in the study of glassy systems. The description of the equilibrium properties
of spin-glass systems has for many years followed a similar route. Although the knowledge
we can gain from numerical simulations in glassy systems is always quite qualitative (either
due to the limited range of timescales or to the inherent simplicity of the simulated model) the
accumulated evidence, as reported throughout this review, points towards the emergence of a
QFDT in the non-equilibrium regime of glassy systems, reminiscent of how the Boltzmann
measure emerges in equilibrium systems. The same conclusion holds for the Edwards measure
in granular media.

What will be the future in the research of FDT violations? Although modelling promises to
offer new ideas and will clarify our understanding we feel that more progress is certainly needed
in basic theory and experiment. In theory we need to understand the origin of the existence
of a QFDT right from the microscopics. Cooperative processes in glasses involve a few tens
of atoms and occur along nanometric length scales. How to link the microscopic activated
processes to the emergence of macroscopic properties (such as the effective temperature) is a
real challenge. In this context, it appears quite interesting to pursue the investigation of the
so-called fluctuation theorems recently proposed to quantify transient violations of the second
law of thermodynamics. From the experimental side the current accumulated knowledge is
still too poor and more experiments are certainly needed for this field of research to grow. A
future line of progress is the use of nanotechnology devices to make noise measurements over
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spatially localized regions of nanometric size. These devices could be used as a microscope
to measure activated processes occurring on small length scales.

Certainly we will see upcoming developments in this exciting area of research. A
continuous exchange of ideas among theory, simulation and experiments is highly desirable
and certainly needed to improve our current understanding in this field.
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